Axonal projection patterns of ventrolateral medullospinal sympathoexcitatory neurons. 1985

S M Barman, and G L Gebber

We studied the following properties of cat ventrolateral medullary (VLM) neurons that projected to the thoracic spinal cord: the relationship between their spontaneous activity and that in the inferior cardiac postganglionic sympathetic nerve, their responses to baroreceptor-reflex activation, their axonal conduction velocities, the funicular trajectories of their axons, the likely sites of termination of their axons, and their axonal branching patterns. Microstimulation in the second thoracic spinal segment (T2) antidromically activated 67 VLM neurons (as determined with time-controlled collision of spontaneous and evoked action potentials), whose activity was correlated to inferior cardiac sympathetic nerve discharge (as determined with spike-triggered averaging). We tested the effect of baroreceptor-reflex activation on the firing rate of 20 of these VLM-spinal neurons. Because the firing rate decreased in each instance, these neurons apparently subserved a sympathoexcitatory function. The axonal branching patterns of 51 VLM-spinal sympathoexcitatory neurons were studied. Thirty-four neurons were antidromically activated by stimulation in the T2 gray matter and in more caudal thoracic spinal segments (T11 and/or T6). In each case, the antidromic response evoked by stimulation in the T2 gray matter was due to activation of an axonal branch rather than the main axon (via current spread to the white matter). This was demonstrated with tests that included time-controlled collision of the action potentials initiated by stimulation in T2 and a more caudal thoracic spinal segment. Some VLM-spinal axons that projected to T11 branched in T6 as well as in T2. These data indicate that some VLM-spinal neurons exerted widespread excitatory influences on sympathetic outflow. Seventeen VLM sympathoexcitatory neurons that innervated the T2 gray matter could not be antidromically activated by stimulation in T5, T6, and T11 despite an extensive search at each level. Thus the axonal projections of some VLM-spinal neurons were restricted to upper thoracic segments. Antidromic mapping in T2 revealed that the axons of VLM sympathoexcitatory neurons coursed through the dorsolateral or ventrolateral funiculus to innervate the region of the intermediolateral nucleus. Mean axonal conduction velocity was 3.5 +/- 0.3 m/s. Those VLM-spinal axons restricted to upper thoracic segments generally were located dorsally and/or medially to those that innervated widely separated thoracic segments. The discharges of 35 other VLM neurons that were antidromically activated by T2 stimulation were not related to sympathetic nerve activity.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

S M Barman, and G L Gebber
May 1986, The American journal of physiology,
S M Barman, and G L Gebber
February 1996, The Journal of comparative neurology,
S M Barman, and G L Gebber
December 2022, Journal of chemical neuroanatomy,
S M Barman, and G L Gebber
May 2011, The Journal of comparative neurology,
S M Barman, and G L Gebber
January 1981, Cell and tissue research,
S M Barman, and G L Gebber
June 2007, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Copied contents to your clipboard!