Nucleotide sequence of a transduced myc gene from a defective feline leukemia provirus. 1985

M J Braun, and P L Deininger, and J W Casey

The nucleotide sequence of a feline v-myc gene and feline leukemia virus (FeLV) flanking regions was determined. Both the nucleotide and predicted amino acid sequences are very similar to the murine and human c-myc genes (ca. 90% identity). The entire c-myc coding sequence is represented in feline v-myc and replaces portions of the gag and env genes and the entire pol gene. The coding sequence is in phase with the gag gene reading frame; v-myc, therefore, appears to be expressed as a gag-myc fusion protein. Viral sequences at the 3' myc-FeLV junction begin with the hexanucleotide CTCCTC, which is also found at the 3' fes-FeLV junction of both Gardner-Arnstein and Snyder-Theilen feline sarcoma viruses. These similarities suggest that some sequence specificity may exist for the transduction of cellular genes by FeLV. Feline v-myc lacks a potential phosphorylation site at amino acid 343 in the putative DNA-binding domain, whereas both human and murine c-myc have such sites. Avian v-myc has lost a potential phosphorylation site which is present in avian c-myc five amino acids from the potential mammalian site. If these sites are actually phosphorylated in normal c-myc proteins, their loss may alter the DNA-binding affinity of v-myc proteins.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D003673 Defective Viruses Viruses which lack a complete genome so that they cannot completely replicate or cannot form a protein coat. Some are host-dependent defectives, meaning they can replicate only in cell systems which provide the particular genetic function which they lack. Others, called SATELLITE VIRUSES, are able to replicate only when their genetic defect is complemented by a helper virus. Incomplete Viruses,Defective Hybrids,Defective Hybrid,Defective Virus,Hybrid, Defective,Hybrids, Defective,Incomplete Virus,Virus, Defective,Virus, Incomplete,Viruses, Defective,Viruses, Incomplete
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005256 Leukemia Virus, Feline A species of GAMMARETROVIRUS causing leukemia, lymphosarcoma, immune deficiency, or other degenerative diseases in cats. Several cellular oncogenes confer on FeLV the ability to induce sarcomas (see also SARCOMA VIRUSES, FELINE). Cat Leukemia Virus,FeLV,Feline Lymphoma Virus,Feline Leukemia Virus,Cat Leukemia Viruses,Feline Leukemia Viruses,Feline Lymphoma Viruses,Leukemia Virus, Cat,Leukemia Viruses, Cat,Leukemia Viruses, Feline,Lymphoma Virus, Feline,Lymphoma Viruses, Feline
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014161 Transduction, Genetic The transfer of bacterial DNA by phages from an infected bacterium to another bacterium. This also refers to the transfer of genes into eukaryotic cells by viruses. This naturally occurring process is routinely employed as a GENE TRANSFER TECHNIQUE. Genetic Transduction,Genetic Transductions,Transductions, Genetic

Related Publications

M J Braun, and P L Deininger, and J W Casey
May 1989, Journal of virology,
M J Braun, and P L Deininger, and J W Casey
October 1986, Virology,
M J Braun, and P L Deininger, and J W Casey
January 1984, Nature,
M J Braun, and P L Deininger, and J W Casey
May 1989, Journal of virology,
M J Braun, and P L Deininger, and J W Casey
January 1987, Microbiology and immunology,
M J Braun, and P L Deininger, and J W Casey
June 1984, Journal of virology,
M J Braun, and P L Deininger, and J W Casey
March 1986, Proceedings of the National Academy of Sciences of the United States of America,
M J Braun, and P L Deininger, and J W Casey
January 2006, Molecular and cellular probes,
Copied contents to your clipboard!