Neuroendocrinology of opioid peptides and their role in the control of gonadotropin and prolactin secretion. 1985

S S Yen, and M E Quigley, and R L Reid, and J F Ropert, and N S Cetel

Substantial evidence now exists to indicate that the endogenous hypothalamic opioidergic mechanism(s) represents one of the important controlling systems for release of gonadotropin-releasing hormone. Modulations of frequency and amplitude of the secretory activity of gonadotropin-releasing hormone appears to be mediated through an inhibitory action of endogenous opioids, and the functional coupling of the opioidergic and gonadotropin-releasing hormone systems is an ovarian steroid-dependent event. There is also evidence to implicate suprahypothalamic mechanism(s) that enhance endogenous opioid inhibition of secretion of gonadotropin-releasing hormone. Although exogenous opioid peptides and their synthetic analogs consistently induce the secretion of prolactin, blockade of opioid receptors in humans by naloxone failed to elicit a decrement in the levels of prolactin under a variety of conditions. On the contrary, naloxone induced a remarkable increment in the secretion of prolactin via an increased frequency of pulsatile release which is synchronized with pulses of luteinizing hormone. These observations suggest that a common neuroendocrine mechanism is involved in the opioidergic control of the secretion of both luteinizing hormone and prolactin in women.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008597 Menstrual Cycle The period from onset of one menstrual bleeding (MENSTRUATION) to the next in an ovulating woman or female primate. The menstrual cycle is regulated by endocrine interactions of the HYPOTHALAMUS; the PITUITARY GLAND; the ovaries; and the genital tract. The menstrual cycle is divided by OVULATION into two phases. Based on the endocrine status of the OVARY, there is a FOLLICULAR PHASE and a LUTEAL PHASE. Based on the response in the ENDOMETRIUM, the menstrual cycle is divided into a proliferative and a secretory phase. Endometrial Cycle,Ovarian Cycle,Cycle, Endometrial,Cycle, Menstrual,Cycle, Ovarian,Cycles, Endometrial,Cycles, Menstrual,Cycles, Ovarian,Endometrial Cycles,Menstrual Cycles,Ovarian Cycles
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D010906 Pituitary Hormone-Releasing Hormones Peptides, natural or synthetic, that stimulate the release of PITUITARY HORMONES. They were first isolated from the extracts of the HYPOTHALAMUS; MEDIAN EMINENCE; PITUITARY STALK; and NEUROHYPOPHYSIS. In addition, some hypophysiotropic hormones control pituitary cell differentiation, cell proliferation, and hormone synthesis. Some can act on more than one pituitary hormone. Hormones, Pituitary Hormone Releasing,Hypophysiotropic Hormones,Hypothalamic Hypophysiotropic Hormone,Hypothalamic Releasing Factor,Hypothalamic Releasing Hormone,Hypothalamic Releasing Hormones,Hormone, Hypothalamic Hypophysiotropic,Hormones, Hypophysiotropic,Hypophysiotropic Hormone, Hypothalamic,Pituitary Hormone Releasing Hormones,Releasing Hormone, Hypothalamic
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D003480 Cushing Syndrome A condition caused by prolonged exposure to excess levels of cortisol (HYDROCORTISONE) or other GLUCOCORTICOIDS from endogenous or exogenous sources. It is characterized by upper body OBESITY; OSTEOPOROSIS; HYPERTENSION; DIABETES MELLITUS; HIRSUTISM; AMENORRHEA; and excess body fluid. Endogenous Cushing syndrome or spontaneous hypercortisolism is divided into two groups, those due to an excess of ADRENOCORTICOTROPIN and those that are ACTH-independent. Cushing's Syndrome,Hypercortisolism,Syndrome, Cushing,Syndrome, Cushing's
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes

Related Publications

S S Yen, and M E Quigley, and R L Reid, and J F Ropert, and N S Cetel
June 1982, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
S S Yen, and M E Quigley, and R L Reid, and J F Ropert, and N S Cetel
January 1983, Monographs in neural sciences,
S S Yen, and M E Quigley, and R L Reid, and J F Ropert, and N S Cetel
April 1979, Prostaglandins and medicine,
S S Yen, and M E Quigley, and R L Reid, and J F Ropert, and N S Cetel
January 1983, British medical bulletin,
S S Yen, and M E Quigley, and R L Reid, and J F Ropert, and N S Cetel
January 1991, Domestic animal endocrinology,
S S Yen, and M E Quigley, and R L Reid, and J F Ropert, and N S Cetel
December 1986, American journal of obstetrics and gynecology,
S S Yen, and M E Quigley, and R L Reid, and J F Ropert, and N S Cetel
January 1987, Hormone research,
S S Yen, and M E Quigley, and R L Reid, and J F Ropert, and N S Cetel
January 1987, Materia medica Polona. Polish journal of medicine and pharmacy,
S S Yen, and M E Quigley, and R L Reid, and J F Ropert, and N S Cetel
March 1987, Acta endocrinologica,
S S Yen, and M E Quigley, and R L Reid, and J F Ropert, and N S Cetel
January 1977, Advances in biochemical psychopharmacology,
Copied contents to your clipboard!