Laser-flash-photolysis studies of p-cresol methylhydroxylase. Electron-transfer properties of the flavin and haem components. 1985

A Bhattacharyya, and G Tollin, and W McIntire, and T P Singer

p-Cresol methylhydroxylase, a heterodimer consisting of one flavoprotein subunit and one cytochrome c subunit, may be resolved into its subunits, and the holoenzyme may then be fully reconstituted from the pure subunits. In the present study we have characterized the reduction kinetics of the intact enzyme and its subunits, by using exogenous 5-deazariboflavin semiquinone radical generated in the presence of EDTA by the laser-flash-photolysis technique. Under anaerobic conditions the 5-deazariboflavin semiquinone radical reacts rapidly with the native enzyme with a rate constant approaching that of a diffusion-controlled reaction (k = 2.8 X 10(9) M-1 X s-1). Time-resolved difference spectra at pH 7.6 indicate that both flavin and haem are reduced initially by the deazariboflavin semiquinone radical, followed by an additional slower intramolecular electron transfer (k = 220 s-1) from the endogenous neutral flavin semiquinone radical to the oxidized haem moiety of the native enzyme. During the steady-state photochemical titration of the native enzyme at pH 7.6 with deazariboflavin semiquinone radical generated by light-irradiation the haem appeared to be reduced before the protein-bound flavin and was followed by the formation of the protein-bound anionic flavin radical. This result suggests that the redox potential of the haem is higher than that of the flavin, and that deprotonation of the flavin neutral radical occurred during the photochemical titration. Reduction kinetics of the flavoprotein and cytochrome subunits were also investigated by laser-flash photolysis. The protein-bound flavin of the isolated flavin subunit was reduced rapidly by the deazariboflavin semiquinone radical (k = 2.2 X 10(9) M-1 X s-1), as was the haem of the pure cytochrome c subunit (k = 3.7 X 10(9) M-1 X s-1). Flash-induced difference spectra obtained for the flavoprotein and cytochrome subunits at pH 7.6 were consistent with the formation of neutral flavin semiquinone radical and reduced haem, respectively. Investigation of the kinetic properties of the neutral flavin semiquinone radical of the flavoprotein subunit at pH 7.6 and at longer times (up to 5s) were consistent with a slow first-order deprotonation reaction (k = 1 s-1) of the neutral radical to its anionic form.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007834 Lasers An optical source that emits photons in a coherent beam. Light Amplification by Stimulated Emission of Radiation (LASER) is brought about using devices that transform light of varying frequencies into a single intense, nearly nondivergent beam of monochromatic radiation. Lasers operate in the infrared, visible, ultraviolet, or X-ray regions of the spectrum. Masers,Continuous Wave Lasers,Pulsed Lasers,Q-Switched Lasers,Continuous Wave Laser,Laser,Laser, Continuous Wave,Laser, Pulsed,Laser, Q-Switched,Lasers, Continuous Wave,Lasers, Pulsed,Lasers, Q-Switched,Maser,Pulsed Laser,Q Switched Lasers,Q-Switched Laser
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010782 Photolysis Chemical bond cleavage reactions resulting from absorption of radiant energy. Photodegradation
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D005420 Flavoproteins Flavoprotein
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function

Related Publications

A Bhattacharyya, and G Tollin, and W McIntire, and T P Singer
June 1985, The Biochemical journal,
A Bhattacharyya, and G Tollin, and W McIntire, and T P Singer
July 1986, Proceedings of the National Academy of Sciences of the United States of America,
A Bhattacharyya, and G Tollin, and W McIntire, and T P Singer
April 1997, Journal of photochemistry and photobiology. B, Biology,
A Bhattacharyya, and G Tollin, and W McIntire, and T P Singer
January 1993, Biochemistry,
A Bhattacharyya, and G Tollin, and W McIntire, and T P Singer
December 1999, Biochemistry,
A Bhattacharyya, and G Tollin, and W McIntire, and T P Singer
May 1981, Biochemistry,
A Bhattacharyya, and G Tollin, and W McIntire, and T P Singer
June 2006, The journal of physical chemistry. A,
A Bhattacharyya, and G Tollin, and W McIntire, and T P Singer
May 2002, Biochimica et biophysica acta,
A Bhattacharyya, and G Tollin, and W McIntire, and T P Singer
July 1980, The Journal of biological chemistry,
A Bhattacharyya, and G Tollin, and W McIntire, and T P Singer
May 1991, Biochemistry,
Copied contents to your clipboard!