The isolation and nucleotide sequence of a cDNA encoding the T cell surface protein T4: a new member of the immunoglobulin gene family. 1985

P J Maddon, and D R Littman, and M Godfrey, and D E Maddon, and L Chess, and R Axel

The surface glycoproteins T4 and T8 define different functional subsets of T lymphocytes and may act as recognition molecules mediating appropriate interactions between the T cell and its target. Previously we employed gene transfer and subtractive hybridization to isolate a T8 cDNA; now we have isolated and sequenced a cDNA clone encoding the T4 molecule. The deduced protein sequence reveals that T4 is an integral membrane protein that shares significant amino acid and structural homologies with members of the immunoglobulin supergene family. The overall structure of T4 consists of an N-terminal variable (V)-like domain, a joining (J)-like region, a third extracellular domain, a membrane-spanning region homologous to class II MHC beta-chains, and a highly charged cytoplasmic domain. Comparison of the protein sequences deduced from the T4 and T8 cDNAs reveals structural similarities consistent with their postulated role as recognition molecules, as well as differences suggesting that the two proteins recognize different structures on the target cell.

UI MeSH Term Description Entries
D007136 Immunoglobulins Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses. Globulins, Immune,Immune Globulin,Immune Globulins,Immunoglobulin,Globulin, Immune
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

P J Maddon, and D R Littman, and M Godfrey, and D E Maddon, and L Chess, and R Axel
August 1990, Nucleic acids research,
P J Maddon, and D R Littman, and M Godfrey, and D E Maddon, and L Chess, and R Axel
June 1987, The Journal of biological chemistry,
P J Maddon, and D R Littman, and M Godfrey, and D E Maddon, and L Chess, and R Axel
February 1991, Gene,
P J Maddon, and D R Littman, and M Godfrey, and D E Maddon, and L Chess, and R Axel
August 1984, Biochemistry international,
P J Maddon, and D R Littman, and M Godfrey, and D E Maddon, and L Chess, and R Axel
December 1996, Plant molecular biology,
P J Maddon, and D R Littman, and M Godfrey, and D E Maddon, and L Chess, and R Axel
June 1988, Journal of immunology (Baltimore, Md. : 1950),
P J Maddon, and D R Littman, and M Godfrey, and D E Maddon, and L Chess, and R Axel
October 1993, Biochimica et biophysica acta,
P J Maddon, and D R Littman, and M Godfrey, and D E Maddon, and L Chess, and R Axel
November 1996, Biochimica et biophysica acta,
P J Maddon, and D R Littman, and M Godfrey, and D E Maddon, and L Chess, and R Axel
January 1990, Nucleic acids research,
P J Maddon, and D R Littman, and M Godfrey, and D E Maddon, and L Chess, and R Axel
February 1993, Nucleic acids research,
Copied contents to your clipboard!