Solubilization and molecular weight estimation of atrial natriuretic factor receptor from bovine adrenal cortex. 1985

S Hirose, and F Akiyama, and M Shinjo, and H Ohno, and K Murakami

Receptors for atrial natriuretic factor (ANF) have been solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate from bovine adrenal cortex and characterized. The detergent extract retained specific high-affinity binding sites for 125I-ANF. Scatchard analysis of the equilibrium binding data revealed a single class of binding site with a K-d of 1.8 nM and a maximum binding capacity of 2.5 pmol/mg of protein. The size of the 125I-ANF X receptor complexes was estimated to be 140,000 daltons by gel filtration on TSK gel G3000SW. Affinity labeling followed by electrophoresis under nonreducing conditions and autoradiography also revealed a single band of a similar size (Mr = 130,000); this band, however, migrated as a Mr = 70,000 species under reducing electrophoretic conditions. These results indicate that the ANF receptor, having a Mr of 130,000 - 140,000, is composed of disulfide-linked subunits and the ANF-binding site is located on the 70-kDa component.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002793 Cholic Acids The 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholanic acid family of bile acids in man, usually conjugated with glycine or taurine. They act as detergents to solubilize fats for intestinal absorption, are reabsorbed by the small intestine, and are used as cholagogues and choleretics. Cholalic Acids,Acids, Cholalic,Acids, Cholic
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D000302 Adrenal Cortex The outer layer of the adrenal gland. It is derived from MESODERM and comprised of three zones (outer ZONA GLOMERULOSA, middle ZONA FASCICULATA, and inner ZONA RETICULARIS) with each producing various steroids preferentially, such as ALDOSTERONE; HYDROCORTISONE; DEHYDROEPIANDROSTERONE; and ANDROSTENEDIONE. Adrenal cortex function is regulated by pituitary ADRENOCORTICOTROPIN. Cortex, Adrenal
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Hirose, and F Akiyama, and M Shinjo, and H Ohno, and K Murakami
December 1986, Molecular pharmacology,
S Hirose, and F Akiyama, and M Shinjo, and H Ohno, and K Murakami
January 1991, Methods in enzymology,
S Hirose, and F Akiyama, and M Shinjo, and H Ohno, and K Murakami
November 1985, FEBS letters,
S Hirose, and F Akiyama, and M Shinjo, and H Ohno, and K Murakami
January 1992, Journal of receptor research,
S Hirose, and F Akiyama, and M Shinjo, and H Ohno, and K Murakami
October 1988, Biochemistry,
S Hirose, and F Akiyama, and M Shinjo, and H Ohno, and K Murakami
August 1985, Biochemical and biophysical research communications,
S Hirose, and F Akiyama, and M Shinjo, and H Ohno, and K Murakami
January 1989, Life sciences,
S Hirose, and F Akiyama, and M Shinjo, and H Ohno, and K Murakami
October 1984, Life sciences,
S Hirose, and F Akiyama, and M Shinjo, and H Ohno, and K Murakami
June 1989, Biochemistry,
S Hirose, and F Akiyama, and M Shinjo, and H Ohno, and K Murakami
February 1986, The Journal of biological chemistry,
Copied contents to your clipboard!