Effect of poly(adenosine diphosphate-ribose) polymerase inhibitors on neocarzinostatin-induced G2 delay in HeLa-S3 cells. 1985

S Iseki, and T Mori

The antitumor antibiotic neocarzinostatin (NCS), which produces single-strand breaks in mammalian cell DNA in vivo, stimulated the activity of chromatin bound enzyme, poly(ADP-ribose) polymerase in HeLa-S3 cells. Because of the possible causal relationship between the poly ADP-ribosylation of chromatin protein and NCS-induced temporary G2 arrest in the cell cycle, several classes of inhibitors of poly(ADP-ribose) polymerase were examined to evaluate the effect on NCS-induced polymerase activity as well as on progression in the cell cycle of synchronized HeLa cells which had been treated with NCS in G2. Compared at the same concentration of 2 mM, the polymerase-inhibiting activity was larger in the order of thymidine, 3-aminobenzamide, nicotinamide, theophylline, and caffeine. Among these agents, caffeine, theophylline, and thymidine caused a reduction in the G2 delay in this order by stimulating the cells to undergo mitosis after NCS treatment. However, 3-aminobenzamide and nicotinamide were poor reducers, if any, of NCS-induced G2 delay. These results suggest that there is not a direct involvement of poly ADP-ribosylation of chromatin protein in the mechanism of NCS-induced G2 delay. The effect of caffeine on G2 delay will probably be independent of its activity as a poly(ADP-ribose) polymerase inhibitor.

UI MeSH Term Description Entries
D009244 NAD+ Nucleosidase An enzyme that catalyzes the hydrolysis of nicotinamide adenine dinucleotide (NAD) to NICOTINAMIDE and ADENOSINE DIPHOSPHATE RIBOSE. Some are extracellular (ectoenzymes).The enzyme from some sources also catalyses the hydrolysis of nicotinamide adenine dinucleotide phosphate (NADP). DPNase,Diphosphopyridine Nucleotidase,NAD+ Glycohydrolase,NADase,Diphosphopyridine Nucleotidases,Ecto-NAD+ Glycohydrolase,NAD(P) Nucleosidase,NAD+ Nucleosidases,NAD-Glycohydrolase,NAD-Glycohydrolases,NADP Nucleosidase,NADP-Glycohydrolase,NADases,Ecto NAD+ Glycohydrolase,Glycohydrolase, Ecto-NAD+,Glycohydrolase, NAD+,NAD Glycohydrolase,NAD Glycohydrolases,NADP Glycohydrolase,Nucleosidase, NAD+,Nucleosidase, NADP,Nucleosidases, NAD+,Nucleotidase, Diphosphopyridine,Nucleotidases, Diphosphopyridine
D009353 Zinostatin An enediyne that alkylates DNA and RNA like MITOMYCIN does, so it is cytotoxic. Neocarzinostatin
D011065 Poly(ADP-ribose) Polymerases Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE. ADP-Ribosyltransferase (Polymerizing),Poly ADP Ribose Polymerase,Poly(ADP-Ribose) Synthase,Poly(ADP-ribose) Polymerase,PARP Polymerase,Poly ADP Ribose Transferase,Poly ADP-Ribose Synthase,Poly(ADP-Ribose) Transferase,Poly(ADPR) Polymerase,Poly(ADPribose) Polymerase,Poly ADP Ribose Synthase,Polymerase, PARP,Synthase, Poly ADP-Ribose
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000067856 Poly(ADP-ribose) Polymerase Inhibitors Chemicals and drugs that inhibit the action of POLY(ADP-RIBOSE)POLYMERASES. Inhibitors of Poly(ADP-ribose) Polymerase,PARP Inhibitor,Poly(ADP-Ribose) Polymerase Inhibitor,Poly(ADP-ribosylation) Inhibitor,Inhibitors of Poly(ADP-ribose) Polymerases,PARP Inhibitors,Poly(ADP-ribosylation) Inhibitors,Inhibitor, PARP,Inhibitors, PARP

Related Publications

S Iseki, and T Mori
June 2012, Hematology/oncology clinics of North America,
S Iseki, and T Mori
March 1975, European journal of cancer,
S Iseki, and T Mori
November 2011, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer,
S Iseki, and T Mori
December 1980, Biochemical and biophysical research communications,
Copied contents to your clipboard!