Metabolism of glucose 1,6-P2. I. Enzymes involved in the synthesis of glucose 1,6-P2 in pig tissues. 1985

F Climent, and M Carreras, and J Carreras

Pig tissues show four enzymatic activities of glucose 1,6-P2 synthesis: (A) 2 [glucose 1-P]----glucose 1,6-P2 + glucose; (B) glucose 1-P + ATP----glucose 1,6-P2 + ADP; (C) glucose 1-P + fructose 1,6-P2----glucose 1,6-P2 + fructose 6-P; (D) glucose 1-P + glycerate 1,3-P2----glucose 1,6-P2 + glycerate 3-P. Brain is the tissue with highest capability of glucose 1,6-P2 synthesis. With the exception of skeletal muscle, activity "D" represents the highest activity of glucose 1,6-P2 synthesis. In muscle, activity "B" is the major activity. The existence of a specific glucose 1,6-P2 synthase which catalyzes reaction "D" is confirmed. Two peaks of such an enzyme are isolated by ion-exchange chromatography. There is an enzyme which specifically catalyzes reaction "C", not previously described. There is a glucose 1-P kinase not identical to phosphofructokinase.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D010732 Phosphofructokinase-1 An allosteric enzyme that regulates glycolysis by catalyzing the transfer of a phosphate group from ATP to fructose-6-phosphate to yield fructose-1,6-bisphosphate. D-tagatose- 6-phosphate and sedoheptulose-7-phosphate also are acceptors. UTP, CTP, and ITP also are donors. In human phosphofructokinase-1, three types of subunits have been identified. They are PHOSPHOFRUCTOKINASE-1, MUSCLE TYPE; PHOSPHOFRUCTOKINASE-1, LIVER TYPE; and PHOSPHOFRUCTOKINASE-1, TYPE C; found in platelets, brain, and other tissues. 6-Phosphofructokinase,6-Phosphofructo-1-kinase,Fructose-6-P 1-Kinase,Fructose-6-phosphate 1-Phosphotransferase,6 Phosphofructokinase,Phosphofructokinase 1
D010733 Phosphoglucomutase An enzyme that catalyzes the conversion of alpha D-glucose 1-phosphate to alpha D-glucose 6-phosphate. EC 5.4.2.2. Glucose Phosphomutase,Phosphomutase, Glucose
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005958 Glucosephosphates
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

F Climent, and M Carreras, and J Carreras
January 1985, Comparative biochemistry and physiology. B, Comparative biochemistry,
F Climent, and M Carreras, and J Carreras
January 1985, Comparative biochemistry and physiology. B, Comparative biochemistry,
F Climent, and M Carreras, and J Carreras
January 1985, Comparative biochemistry and physiology. B, Comparative biochemistry,
F Climent, and M Carreras, and J Carreras
January 1983, Comparative biochemistry and physiology. B, Comparative biochemistry,
F Climent, and M Carreras, and J Carreras
January 1982, Comparative biochemistry and physiology. B, Comparative biochemistry,
F Climent, and M Carreras, and J Carreras
January 1961, The Journal of general physiology,
F Climent, and M Carreras, and J Carreras
January 1983, Biomedica biochimica acta,
F Climent, and M Carreras, and J Carreras
January 1974, Journal of dental research,
F Climent, and M Carreras, and J Carreras
January 1993, Advances in enzyme regulation,
Copied contents to your clipboard!