Nanoparticles of methylene blue enhance photodynamic therapy. 2018

V P S Jesus, and L Raniero, and G M Lemes, and T T Bhattacharjee, and P C Caetano Júnior, and M L Castilho
Laboratório de Bionanotecnologia, Instituto de Pesquisa & Desenvolvimento, Universidade do Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, 12244000, Brazil; Laboratório de Nanossensores, Instituto de Pesquisa & Desenvolvimento, Universidade do Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, 12244000, Brazil.

Breast cancer is the most commonly diagnosed cancer and the second leading cause of death related to cancer among women worldwide. Screening and advancements in treatment have improved survival rate of women suffering from this ailment. Novel therapeutic techniques may further reduce cancer related mortality. One of several emerging therapeutic options is Photodynamic Therapy (PDT) that uses light activated photosensitizer (PS) inducing cell death by apoptosis and/or necrosis. Nanotechnology has made contribution to improve photosensitizer for PDT, increasing the efficiency of therapy using gold and silver nanoparticles. Efforts have been done to develop better mechanism to improve PS and consequently PDT effects. In this study, we investigate the efficacy of the PDT using gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) when mixed to methylene blue (MB) in the treatment of the human breast adenocarcinoma cell line (MDA-MB-468). The MDA-MB-468 was treated in the presence of different MB concentrations with/without AuNPs or AgNPs. The colloidal solution of AgNPs showed a plasmon resonance band at 411 nm in UV-visible range and a bimodal size distribution. The results of viability analysis showed that cells treated with nanoparticles exhibited higher cytotoxicity than cells treated with only MB, improving the efficiency of the treatment in the tumor cells. The cytotoxicity effect of MB associated with AgNPs on MDA-MB-468 cell line could be related to increased reactive oxygen species production due to the release of Ag+ ions from nanoparticles surface, suggesting that the association between FS and AgNPs has potential as a PDT agent.

UI MeSH Term Description Entries
D008751 Methylene Blue A compound consisting of dark green crystals or crystalline powder, having a bronze-like luster. Solutions in water or alcohol have a deep blue color. Methylene blue is used as a bacteriologic stain and as an indicator. It inhibits GUANYLATE CYCLASE, and has been used to treat cyanide poisoning and to lower levels of METHEMOGLOBIN. Methylthionine Chloride,Swiss Blue,Basic Blue 9,Chromosmon,Methylene Blue N,Methylthioninium Chloride,Urolene Blue,Blue 9, Basic,Blue N, Methylene,Blue, Methylene,Blue, Swiss,Blue, Urolene
D010778 Photochemotherapy Therapy using oral or topical photosensitizing agents with subsequent exposure to light. Blue Light Photodynamic Therapy,Photodynamic Therapy,Red Light PDT,Red Light Photodynamic Therapy,Therapy, Photodynamic,Light PDT, Red,PDT, Red Light,Photochemotherapies,Photodynamic Therapies,Therapies, Photodynamic
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D006046 Gold A yellow metallic element with the atomic symbol Au, atomic number 79, and atomic weight 197. It is used in jewelry, goldplating of other metals, as currency, and in dental restoration. Many of its clinical applications, such as ANTIRHEUMATIC AGENTS, are in the form of its salts.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000230 Adenocarcinoma A malignant epithelial tumor with a glandular organization. Adenocarcinoma, Basal Cell,Adenocarcinoma, Granular Cell,Adenocarcinoma, Oxyphilic,Adenocarcinoma, Tubular,Adenoma, Malignant,Carcinoma, Cribriform,Carcinoma, Granular Cell,Carcinoma, Tubular,Adenocarcinomas,Adenocarcinomas, Basal Cell,Adenocarcinomas, Granular Cell,Adenocarcinomas, Oxyphilic,Adenocarcinomas, Tubular,Adenomas, Malignant,Basal Cell Adenocarcinoma,Basal Cell Adenocarcinomas,Carcinomas, Cribriform,Carcinomas, Granular Cell,Carcinomas, Tubular,Cribriform Carcinoma,Cribriform Carcinomas,Granular Cell Adenocarcinoma,Granular Cell Adenocarcinomas,Granular Cell Carcinoma,Granular Cell Carcinomas,Malignant Adenoma,Malignant Adenomas,Oxyphilic Adenocarcinoma,Oxyphilic Adenocarcinomas,Tubular Adenocarcinoma,Tubular Adenocarcinomas,Tubular Carcinoma,Tubular Carcinomas
D012834 Silver An element with the atomic symbol Ag, atomic number 47, and atomic weight 107.87. It is a soft metal that is used medically in surgical instruments, dental prostheses, and alloys. Long-continued use of silver salts can lead to a form of poisoning known as ARGYRIA.
D016503 Drug Delivery Systems Systems for the delivery of drugs to target sites of pharmacological actions. Technologies employed include those concerning drug preparation, route of administration, site targeting, metabolism, and toxicity. Drug Targeting,Delivery System, Drug,Delivery Systems, Drug,Drug Delivery System,Drug Targetings,System, Drug Delivery,Systems, Drug Delivery,Targeting, Drug,Targetings, Drug
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017319 Photosensitizing Agents Drugs that are pharmacologically inactive but when exposed to ultraviolet radiation or sunlight are converted to their active metabolite to produce a beneficial reaction affecting the diseased tissue. These compounds can be administered topically or systemically and have been used therapeutically to treat psoriasis and various types of neoplasms. Photosensitizer,Photosensitizers,Photosensitizing Agent,Photosensitizing Effect,Photosensitizing Effects,Agent, Photosensitizing,Agents, Photosensitizing,Effect, Photosensitizing,Effects, Photosensitizing

Related Publications

V P S Jesus, and L Raniero, and G M Lemes, and T T Bhattacharjee, and P C Caetano Júnior, and M L Castilho
January 2021, Molecules (Basel, Switzerland),
V P S Jesus, and L Raniero, and G M Lemes, and T T Bhattacharjee, and P C Caetano Júnior, and M L Castilho
May 2015, Journal of photochemistry and photobiology. B, Biology,
V P S Jesus, and L Raniero, and G M Lemes, and T T Bhattacharjee, and P C Caetano Júnior, and M L Castilho
January 2012, International journal of nanomedicine,
V P S Jesus, and L Raniero, and G M Lemes, and T T Bhattacharjee, and P C Caetano Júnior, and M L Castilho
January 2011, Macromolecular bioscience,
V P S Jesus, and L Raniero, and G M Lemes, and T T Bhattacharjee, and P C Caetano Júnior, and M L Castilho
June 2022, Biomaterials research,
V P S Jesus, and L Raniero, and G M Lemes, and T T Bhattacharjee, and P C Caetano Júnior, and M L Castilho
May 2011, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology,
V P S Jesus, and L Raniero, and G M Lemes, and T T Bhattacharjee, and P C Caetano Júnior, and M L Castilho
December 1995, Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen,
V P S Jesus, and L Raniero, and G M Lemes, and T T Bhattacharjee, and P C Caetano Júnior, and M L Castilho
January 2017, Journal of nanoscience and nanotechnology,
V P S Jesus, and L Raniero, and G M Lemes, and T T Bhattacharjee, and P C Caetano Júnior, and M L Castilho
May 2016, Artificial cells, nanomedicine, and biotechnology,
V P S Jesus, and L Raniero, and G M Lemes, and T T Bhattacharjee, and P C Caetano Júnior, and M L Castilho
August 2016, Artificial cells, nanomedicine, and biotechnology,
Copied contents to your clipboard!