F factor inhibition of conjugal transfer of broad-host-range plasmid RP4: requirement for the protein product of pif operon regulatory gene pifC. 1985

J F Miller, and E Lanka, and M H Malamy

By the use of deletions, point mutations, and gene fusions, we show that the protein product of the F factor pifC gene is responsible for F factor inhibition of plasmid RP4 conjugal transfer. Deletion analysis of pif sequences carried by pSC101-F chimeric plasmids demonstrated that removal of all or part of the pifC coding sequence greatly decreased or abolished the ability of these plasmids to inhibit RP4 transfer. Amber mutations in the pifC gene eliminated inhibition in an Su- host strain but not in and Su+ (supF) host. Plasmids carrying nonpolar pifC mutations did not decrease the efficiency of RP4 transfer when present in trans. Whereas pifC+ plasmids inhibited RP4 transfer, the presence of RP4 in the same cell as F' lac increased F'lac Pif activity approximately 1,000-fold. This effect most likely resulted from the binding of the pifC product to RP4 DNA and concomitant derepression of the F factor pif operon. PifC inhibited trans mobilization of pMS204, a nonconjugative plasmid carrying the RP4 oriT locus, by the RP1 derivative pUB307. pMS204 had no trans effect on pif operon expression, whereas pUB307 increased F'lac Pif expression, as did RP4. Our results suggest that the pifC product inhibits expression of one or more RP4 genes, the products of which are required for conjugal transfer of RP4 and are required in trans for mobilization of nonconjugal RP4 oriT containing plasmids.

UI MeSH Term Description Entries
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003227 Conjugation, Genetic A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes. Bacterial Conjugation,Conjugation, Bacterial,Genetic Conjugation
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005144 F Factor A plasmid whose presence in the cell, either extrachromosomal or integrated into the BACTERIAL CHROMOSOME, determines the "sex" of the bacterium, host chromosome mobilization, transfer via conjugation (CONJUGATION, GENETIC) of genetic material, and the formation of SEX PILI. Resistance Transfer Factor,Sex Factor F,Sex Factor, Bacterial,Bacterial Sex Factor,Bacterial Sex Factors,F Plasmid,F Plasmids,Factor, Bacterial Sex,Factors, Bacterial Sex,Fertility Factor, Bacterial,Sex Factors, Bacterial,Bacterial Fertility Factor,Bacterial Fertility Factors,F Factors,Factor F, Sex,Factor Fs, Sex,Factor, Bacterial Fertility,Factor, F,Factor, Resistance Transfer,Factors, Bacterial Fertility,Factors, F,Factors, Resistance Transfer,Fertility Factors, Bacterial,Fs, Sex Factor,Plasmid, F,Plasmids, F,Resistance Transfer Factors,Sex Factor Fs,Transfer Factor, Resistance,Transfer Factors, Resistance
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial

Related Publications

J F Miller, and E Lanka, and M H Malamy
December 1996, Journal of bacteriology,
J F Miller, and E Lanka, and M H Malamy
April 1994, Molecular microbiology,
J F Miller, and E Lanka, and M H Malamy
August 1988, Journal of bacteriology,
J F Miller, and E Lanka, and M H Malamy
July 1981, Journal of general microbiology,
J F Miller, and E Lanka, and M H Malamy
October 1988, The Journal of applied bacteriology,
J F Miller, and E Lanka, and M H Malamy
October 1984, Genetika,
J F Miller, and E Lanka, and M H Malamy
January 1983, Molecular & general genetics : MGG,
J F Miller, and E Lanka, and M H Malamy
September 1983, Applied and environmental microbiology,
J F Miller, and E Lanka, and M H Malamy
November 1989, Journal of bacteriology,
Copied contents to your clipboard!