A heterozygous collagen defect in a variant of the Ehlers-Danlos syndrome type VII. Evidence for a deleted amino-telopeptide domain in the pro-alpha 2(I) chain. 1985

D R Eyre, and F D Shapiro, and J F Aldridge

A structural defect in the alpha 2(I) chain of type I collagen was characterized in a new case of the Ehlers-Danlos syndrome type VII. The patient's skin, fascia, and bone collagens all showed an abnormal additional chain, pN-alpha 2(I)s, running slower than the alpha 2(I) chain on electrophoresis. The extension was shown to be on the amino-terminal fragment of pN-alpha (I)s by cleavage with human collagenase, but pepsin was unable to convert pN-alpha 2(I)s to alpha 2(I). Skin collagen was 4-fold more extractable and contained fewer beta-dimers and a lower concentration of cross-linking amino acids than control skin collagen. Electron micrographs of both dermis and bone showed markedly irregular ragged outlines of the collagen fibrils in cross-section, although the patient had no clinical signs of bone disease. Procollagen secreted by her skin fibroblasts in culture showed equal amounts of the normal and abnormal alpha 2(I) chains on pepsin digestion. Before pepsin, the pN-alpha 2(I) component ran as a doublet on electrophoresis; pepsin removed only the normal slower chain. The suspected deletion in pN-alpha 2(I)s was traced by CNBr peptide analysis to the N-propeptide fragment, which behaved on electrophoresis about 15-20 residues smaller than that from the normal pN-alpha 2(I) chain. The simplest genetic explanation is a spontaneous heterozygote in which one normal and one abnormal allele for the pro-alpha 2(I) gene are expressed, the protein defect being a deletion of the junction domain that spans the N-propeptidase cleavage site and the N-telopeptide cross-linking sequence.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010434 Pepsin A Formed from pig pepsinogen by cleavage of one peptide bond. The enzyme is a single polypeptide chain and is inhibited by methyl 2-diaazoacetamidohexanoate. It cleaves peptides preferentially at the carbonyl linkages of phenylalanine or leucine and acts as the principal digestive enzyme of gastric juice. Pepsin,Pepsin 1,Pepsin 3
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011347 Procollagen A biosynthetic precursor of collagen containing additional amino acid sequences at the amino-terminal and carboxyl-terminal ends of the polypeptide chains. Protocollagen,Procollagen Type M
D001842 Bone and Bones A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principal cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX. Bone Tissue,Bone and Bone,Bone,Bones,Bones and Bone,Bones and Bone Tissue,Bony Apophyses,Bony Apophysis,Condyle,Apophyses, Bony,Apophysis, Bony,Bone Tissues,Condyles,Tissue, Bone,Tissues, Bone
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D003012 Microbial Collagenase A metalloproteinase which degrades helical regions of native collagen to small fragments. Preferred cleavage is -Gly in the sequence -Pro-Xaa-Gly-Pro-. Six forms (or 2 classes) have been isolated from Clostridium histolyticum that are immunologically cross-reactive but possess different sequences and different specificities. Other variants have been isolated from Bacillus cereus, Empedobacter collagenolyticum, Pseudomonas marinoglutinosa, and species of Vibrio and Streptomyces. EC 3.4.24.3. Clostridiopeptidase A,Clostridium histolyticum Collagenase,Collagenase, Microbial,Collagenase Clostridium histolyticum,Collagenase-Like Peptidase,Collalysine,Nucleolysin,Clostridium histolyticum, Collagenase,Collagenase Like Peptidase,Collagenase, Clostridium histolyticum,Peptidase, Collagenase-Like,histolyticum, Collagenase Clostridium
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D004535 Ehlers-Danlos Syndrome A heterogeneous group of autosomally inherited COLLAGEN DISEASES caused by defects in the synthesis or structure of FIBRILLAR COLLAGEN. There are numerous subtypes: classical, hypermobility, vascular, and others. Common clinical features include hyperextensible skin and joints, skin fragility and reduced wound healing capability. Cutis Elastica,Ehlers Danlos Disease,Ehlers-Danlos Disease,Danlos Disease, Ehlers,Disease, Ehlers Danlos,Disease, Ehlers-Danlos,Ehlers Danlos Syndrome,Syndrome, Ehlers-Danlos

Related Publications

D R Eyre, and F D Shapiro, and J F Aldridge
December 1987, The Journal of biological chemistry,
D R Eyre, and F D Shapiro, and J F Aldridge
January 1987, Archives of dermatology,
D R Eyre, and F D Shapiro, and J F Aldridge
April 1986, The Journal of biological chemistry,
D R Eyre, and F D Shapiro, and J F Aldridge
September 1990, The Journal of biological chemistry,
D R Eyre, and F D Shapiro, and J F Aldridge
September 1980, The Journal of biological chemistry,
D R Eyre, and F D Shapiro, and J F Aldridge
October 1989, The Journal of biological chemistry,
Copied contents to your clipboard!