Cyanine and safranine dyes as membrane potential probes in cytochrome c oxidase reconstituted proteoliposomes. 1985

A P Singh, and P Nicholls

Safranine and the cyanine dye, 3',3'-dipropylthiadicarbocyanine (diSC3-5), were examined as membrane potential probes in cytochrome c oxidase vesicles. The spectra of the vesicle-associated dyes resemble those of the same dyes in organic solvents, indicating that safranine and diSC3-5 probably dissolve in a hydrophobic region of the proteoliposomal membrane. This binding of safranine to proteoliposomes occurs with a dye-membrane dissociation constant in the micromolar range. The binding of safranine and of diSC3-5 to liposomes or proteoliposomes is accompanied by fluorescence enhancement. This enhanced fluorescence is quenched by respiration or by the establishment of a K+ diffusion potential by valinomycin (negative interior). An optimal dye/lipid ratio was required to secure maximum fluorescence quenching of the dyes, whether that quenching was active or passive. Calibrations of both the safranine and the diSC3-5 responses with K+ diffusion potentials were also affected by the dye/lipid ratio. At lower dye/lipid ratios, the calibration curve was linear at higher potentials but deviated from linearity at lower potentials. The converse was true at higher dye/lipid ratios. The non-linearity of the calibration curve at higher potential was attributed to a 'saturation' effect; it may also involve increased permeability of proteoliposomal membrane to protons. Destacking of dye at the lower dye/lipid ratio was probably responsible for the non-linearity of the calibration curves at lower potentials. When all these effects are taken into account, the steady-state value of delta psi generated during maximal proteoliposomal respiration was calculated to be between 140 and 160 mV (interior negative) when measured with either safranine or diSC3-5. We conclude that quantitative estimates of delta psi values can be made using these probes in cytochrome c oxidase reconstituted proteoliposomes provided that appropriate precautions are taken.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008722 Methods A series of steps taken in order to conduct research. Techniques,Methodological Studies,Methodological Study,Procedures,Studies, Methodological,Study, Methodological,Method,Procedure,Technique
D010619 Phenazines
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011510 Proteolipids Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
D011804 Quinolines
D002232 Carbocyanines Compounds that contain three methine groups. They are frequently used as cationic dyes used for differential staining of biological materials. Carbocyanine

Related Publications

A P Singh, and P Nicholls
June 1995, Biochemical and biophysical research communications,
A P Singh, and P Nicholls
December 1996, The Biochemical journal,
A P Singh, and P Nicholls
January 1990, Biochemistry,
A P Singh, and P Nicholls
December 2005, Proceedings of the National Academy of Sciences of the United States of America,
A P Singh, and P Nicholls
September 2022, Molecules (Basel, Switzerland),
A P Singh, and P Nicholls
November 2000, Journal of photochemistry and photobiology. B, Biology,
Copied contents to your clipboard!