Regeneration of axons and synaptic connections by touch sensory neurons in the leech central nervous system. 1985

E R Macagno, and K J Muller, and S A DeRiemer

In studies of axonal regeneration, it has been difficult to determine (a) whether growth along the normal pathway is important for restoration of connections with previous targets and (b) whether the new synapses resemble the old in strength and location. To address these problems at the level of individual nerve cells, we have studied touch (T) sensory neurons in the leech after their axons have been severed and we have confirmed that their axons regenerate electrical connections with some of their usual synaptic targets in the central nervous system. Injections of horseradish peroxidase and Lucifer Yellow dye into separate T cells in unoperated animals showed that T cell axons typically run close to one another within single ganglia or from ganglion to ganglion. Knowledge of one T cell's arborizations thus revealed the groundplan of others in the same ganglia and the sites of apparent contact with its synaptic targets. For regenerating axons, those sprouts that encountered the normal pathway (as marked by homologous axons) grew preferentially along it. Despite the striking coincidence of old and new pathways, regenerated branching patterns within the ganglionic neuropils were usually incomplete and sometimes had atypical branches. Synaptic connections with normal targets (other T cells as well as S and C cells) were abnormally weak physiologically. The numbers of apparent contacts seen with the light microscope were also lower than normal. In addition, the strength of the synaptic potentials, normalized to the number of contacts (calculated as microvolts per contact), was generally smaller in the regenerated connections than in the controls, and smallest at earliest times, during the first 6 weeks following injury. It thus appears to be characteristic of T cell regeneration that axon regrowth is aided by the recognition of specific pathways and that successful regeneration, as assayed anatomically and physiologically, occurs frequently but usually incompletely.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D007865 Leeches Annelids of the class Hirudinea. Some species, the bloodsuckers, may become temporarily parasitic upon animals, including man. Medicinal leeches (HIRUDO MEDICINALIS) have been used therapeutically for drawing blood since ancient times. Hirudinea,Hirudineas,Leeche
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

E R Macagno, and K J Muller, and S A DeRiemer
December 1977, Proceedings of the Royal Society of London. Series B, Biological sciences,
E R Macagno, and K J Muller, and S A DeRiemer
March 1972, Proceedings of the National Academy of Sciences of the United States of America,
E R Macagno, and K J Muller, and S A DeRiemer
October 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E R Macagno, and K J Muller, and S A DeRiemer
October 1990, The Journal of experimental biology,
E R Macagno, and K J Muller, and S A DeRiemer
November 1976, Journal of neurophysiology,
E R Macagno, and K J Muller, and S A DeRiemer
January 1958, Uspekhi sovremennoi biologii,
E R Macagno, and K J Muller, and S A DeRiemer
October 1956, Physiological reviews,
E R Macagno, and K J Muller, and S A DeRiemer
June 2009, The Journal of physiology,
E R Macagno, and K J Muller, and S A DeRiemer
November 1976, Journal of neurophysiology,
Copied contents to your clipboard!