Regulation of contact sensitivity in non-obese diabetic (NOD) mice by innate immunity. 2018

Marian Szczepanik, and Monika Majewska-Szczepanik, and Florence S Wong, and Paulina Kowalczyk, and Chandrashekhar Pasare, and Li Wen
Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut.

BACKGROUND Genetic background influences allergic immune responses to environmental stimuli. Non-obese diabetic (NOD) mice are highly susceptible to environmental stimuli. Little is known about the interaction of autoimmune genetic factors with innate immunity in allergies, especially skin hypersensitivity. OBJECTIVE To study the interplay of innate immunity and autoimmune genetic factors in contact hypersensitivity (CHS) by using various innate immunity-deficient NOD mice. METHODS Toll-like receptor (TLR) 2-deficient, TLR9-deficient and MyD88-deficient NOD mice were used to investigate CHS. The cellular mechanism was determined by flow cytometry in vitro and adoptive cell transfer in vivo. To investigate the role of MyD88 in dendritic cells (DCs) in CHS, we also used CD11cMyD88+  MyD88-/- NOD mice, in which MyD88 is expressed only in CD11c+ cells. RESULTS We found that innate immunity negatively regulates CHS, as innate immunity-deficient NOD mice developed exacerbated CHS accompanied by increased numbers of skin-migrating CD11c+ DCs expressing higher levels of major histocompatibility complex II and CD80. Moreover, MyD88-/- NOD mice had increased numbers of CD11c+  CD207-  CD103+ DCs and activated T effector cells in the skin-draining lymph nodes. Strikingly, re-expression of MyD88 in CD11c+ DCs (CD11cMyD88+  MyD88-/- NOD mice) restored hyper-CHS to a normal level in MyD88-/- NOD mice. CONCLUSIONS Our results suggest that the autoimmune-prone NOD genetic background aggravates CHS regulated by innate immunity, through DCs and T effector cells.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D008198 Lymph Nodes They are oval or bean shaped bodies (1 - 30 mm in diameter) located along the lymphatic system. Lymph Node,Node, Lymph,Nodes, Lymph
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010853 Picryl Chloride A hapten that generates suppressor cells capable of down-regulating the efferent phase of trinitrophenol-specific contact hypersensitivity. (Arthritis Rheum 1991 Feb;34(2):180). 2,4,6-Trinitro-1-chlorobenzene,1-Chloro-2,4,6-trinitrobenzene,Trinitrochlorobenzene,Chloride, Picryl
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D003877 Dermatitis, Contact A type of acute or chronic skin reaction in which sensitivity is manifested by reactivity to materials or substances coming in contact with the skin. It may involve allergic or non-allergic mechanisms. Contact Dermatitis,Dermatitis Venenata,Eczema, Contact,Hypersensitivity, Contact,Sensitivity, Contact,Contact Dermatitides,Contact Eczema,Contact Hypersensitivities,Contact Hypersensitivity,Contact Sensitivities,Contact Sensitivity,Dermatitides, Contact,Hypersensitivities, Contact,Sensitivities, Contact
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000949 Histocompatibility Antigens Class II Large, transmembrane, non-covalently linked glycoproteins (alpha and beta). Both chains can be polymorphic although there is more structural variation in the beta chains. The class II antigens in humans are called HLA-D ANTIGENS and are coded by a gene on chromosome 6. In mice, two genes named IA and IE on chromosome 17 code for the H-2 antigens. The antigens are found on B-lymphocytes, macrophages, epidermal cells, and sperm and are thought to mediate the competence of and cellular cooperation in the immune response. The term IA antigens used to refer only to the proteins encoded by the IA genes in the mouse, but is now used as a generic term for any class II histocompatibility antigen. Antigens, Immune Response,Class II Antigens,Class II Histocompatibility Antigen,Class II Major Histocompatibility Antigen,Ia Antigens,Ia-Like Antigen,Ia-Like Antigens,Immune Response Antigens,Immune-Associated Antigens,Immune-Response-Associated Antigens,MHC Class II Molecule,MHC II Peptide,Class II Antigen,Class II Histocompatibility Antigens,Class II MHC Proteins,Class II Major Histocompatibility Antigens,Class II Major Histocompatibility Molecules,I-A Antigen,I-A-Antigen,IA Antigen,MHC Class II Molecules,MHC II Peptides,MHC-II Molecules,Antigen, Class II,Antigen, I-A,Antigen, IA,Antigen, Ia-Like,Antigens, Class II,Antigens, Ia,Antigens, Ia-Like,Antigens, Immune-Associated,Antigens, Immune-Response-Associated,I A Antigen,II Peptide, MHC,Ia Like Antigen,Ia Like Antigens,Immune Associated Antigens,Immune Response Associated Antigens,MHC II Molecules,Molecules, MHC-II,Peptide, MHC II,Peptides, MHC II
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Marian Szczepanik, and Monika Majewska-Szczepanik, and Florence S Wong, and Paulina Kowalczyk, and Chandrashekhar Pasare, and Li Wen
February 2008, Autonomic neuroscience : basic & clinical,
Marian Szczepanik, and Monika Majewska-Szczepanik, and Florence S Wong, and Paulina Kowalczyk, and Chandrashekhar Pasare, and Li Wen
March 1989, Clinical and experimental immunology,
Marian Szczepanik, and Monika Majewska-Szczepanik, and Florence S Wong, and Paulina Kowalczyk, and Chandrashekhar Pasare, and Li Wen
October 1994, Journal of autoimmunity,
Marian Szczepanik, and Monika Majewska-Szczepanik, and Florence S Wong, and Paulina Kowalczyk, and Chandrashekhar Pasare, and Li Wen
January 1988, Journal of immunogenetics,
Marian Szczepanik, and Monika Majewska-Szczepanik, and Florence S Wong, and Paulina Kowalczyk, and Chandrashekhar Pasare, and Li Wen
February 1988, Diabetes research (Edinburgh, Scotland),
Marian Szczepanik, and Monika Majewska-Szczepanik, and Florence S Wong, and Paulina Kowalczyk, and Chandrashekhar Pasare, and Li Wen
August 1996, The American journal of pathology,
Marian Szczepanik, and Monika Majewska-Szczepanik, and Florence S Wong, and Paulina Kowalczyk, and Chandrashekhar Pasare, and Li Wen
January 1993, Diabetes research and clinical practice,
Marian Szczepanik, and Monika Majewska-Szczepanik, and Florence S Wong, and Paulina Kowalczyk, and Chandrashekhar Pasare, and Li Wen
November 2008, British journal of pharmacology,
Marian Szczepanik, and Monika Majewska-Szczepanik, and Florence S Wong, and Paulina Kowalczyk, and Chandrashekhar Pasare, and Li Wen
January 1998, Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association,
Marian Szczepanik, and Monika Majewska-Szczepanik, and Florence S Wong, and Paulina Kowalczyk, and Chandrashekhar Pasare, and Li Wen
March 2015, G3 (Bethesda, Md.),
Copied contents to your clipboard!