Implementation of periodic acid-thiosemicarbazide-silver proteinate staining for ultrastructural assessment of muscle glycogen utilization during exercise. 1985

J Fridén, and J Seger, and B Ekblom

Distribution of glycogen particles in semithin and ultrathin sections of biopsy samples from human muscles subjected to either short- or long-term running were investigated using PAS and Periodic Acid-ThioSemiCarbazide-Silver Proteinate (PA-TSC-SP) staining methods. Glycogen particles were predominantly found immediately under the sarcolemma or aligned along the myofibrillar I-band. After long-term exhaustive exercise type-1 fibers with a few or no glycogen particles in the core of the fibers were frequently observed. The subsarcolemmal glycogen stores of these "depleted" type-1 fibers were about three times as large as after exhaustive short-time exercise. Another indication of utilization of subsarcolemmal glycogen stores during anaerobic exercise was that many particles displayed a pale, rudimentary shape. This observation suggests fragmental metabolization of glycogen. Thus, depending on type of exercise and type of fiber differential and sequential glycogen utilization patterns can be observed.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010503 Periodic Acid-Schiff Reaction A histochemical technique for staining carbohydrates. It is based on PERIODIC ACID oxidation of a substance containing adjacent hydroxyl groups. The resulting aldehydes react with Schiff reagent to form a colored product. PAS Reaction,PAS Reactions,Periodic Acid Schiff Reaction,Periodic Acid-Schiff Reactions,Reaction, PAS,Reaction, Periodic Acid-Schiff,Reactions, PAS,Reactions, Periodic Acid-Schiff
D010504 Periodic Acid A strong oxidizing agent. Paraperiodic Acid,Periodic Acid (HIO4),Periodic Acids,Acid, Paraperiodic,Acid, Periodic,Acids, Periodic
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D006003 Glycogen
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths

Related Publications

J Fridén, and J Seger, and B Ekblom
January 1992, Journal of submicroscopic cytology and pathology,
J Fridén, and J Seger, and B Ekblom
March 1987, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
J Fridén, and J Seger, and B Ekblom
July 1956, The Anatomical record,
J Fridén, and J Seger, and B Ekblom
January 1974, Acta physiologica Scandinavica,
Copied contents to your clipboard!