LIN-12/Notch Regulates GABA Signaling at the Caenorhabditis elegans Neuromuscular Junction. 2018

Altar Sorkaç, and Michael A DiIorio, and Patrick J O'Hern, and Saba N Baskoylu, and Hannah K Graham, and Anne C Hart
Department of Neuroscience, Brown University, Providence, Rhode Island, 02912.

The role of Notch signaling in cell-fate decisions has been studied extensively; however, this pathway is also active in adult tissues, including the nervous system. Notch signaling modulates a wide range of behaviors and processes of the nervous system in the nematode Caenorhabditis elegans, but there is no evidence for Notch signaling directly altering synaptic strength. Here, we demonstrate Notch-mediated regulation of synaptic activity at the C. elegans neuromuscular junction (NMJ). For this, we used aldicarb, an inhibitor of the enzyme acetylcholinesterase, and assessed paralysis rates of animals with altered Notch signaling. Notch receptors LIN-12 and GLP-1 are required for normal NMJ function; they regulate NMJ activity in an opposing fashion. Complete loss of LIN-12 skews the excitation/inhibition balance at the NMJ toward increased activity, whereas partial loss of GLP-1 has the opposite effect. Specific Notch ligands and co-ligands are also required for proper NMJ function. The role of LIN-12 is independent of cell-fate decisions; manipulation of LIN-12 signaling through RNAi knockdown or overexpression of the co-ligand OSM-11 after development alters NMJ activity. We demonstrate that LIN-12 modulates GABA signaling in this paradigm, as loss of GABA signaling suppresses LIN-12 gain-of-function defects. Further analysis, in vivo and in silico, suggests that LIN-12 may modulate transcription of the GABAB receptor GBB-2 Our findings confirm a non-developmental role for the LIN-12/Notch receptor in regulating synaptic signaling and identify the GABAB receptor GBB-2 as a potential Notch transcriptional target in the C. elegans nervous system.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000448 Aldicarb Carbamate derivative used as an insecticide, acaricide, and nematocide. ENT-27,093,Temik,UC-21,149,UC-21149,ENT 27,093,ENT27,093,UC 21,149,UC 21149,UC21,149,UC21149
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017173 Caenorhabditis elegans A species of nematode that is widely used in biological, biochemical, and genetic studies. Caenorhabditis elegan,elegan, Caenorhabditis
D047908 Intracellular Signaling Peptides and Proteins Proteins and peptides that are involved in SIGNAL TRANSDUCTION within the cell. Included here are peptides and proteins that regulate the activity of TRANSCRIPTION FACTORS and cellular processes in response to signals from CELL SURFACE RECEPTORS. Intracellular signaling peptide and proteins may be part of an enzymatic signaling cascade or act through binding to and modifying the action of other signaling factors. Intracellular Signaling Peptides,Intracellular Signaling Proteins,Peptides, Intracellular Signaling,Proteins, Intracellular Signaling,Signaling Peptides, Intracellular,Signaling Proteins, Intracellular
D051880 Receptors, Notch A family of conserved cell surface receptors that contain EPIDERMAL GROWTH FACTOR repeats in their extracellular domain and ANKYRIN REPEATS in their cytoplasmic domains. The cytoplasmic domains are released upon ligand binding and translocate to the CELL NUCLEUS, where they act as transcription factors. Notch Protein,Notch Receptor,Notch Receptors,Notch Proteins,Protein, Notch,Receptor, Notch

Related Publications

Altar Sorkaç, and Michael A DiIorio, and Patrick J O'Hern, and Saba N Baskoylu, and Hannah K Graham, and Anne C Hart
August 2008, PLoS biology,
Altar Sorkaç, and Michael A DiIorio, and Patrick J O'Hern, and Saba N Baskoylu, and Hannah K Graham, and Anne C Hart
August 2005, WormBook : the online review of C. elegans biology,
Altar Sorkaç, and Michael A DiIorio, and Patrick J O'Hern, and Saba N Baskoylu, and Hannah K Graham, and Anne C Hart
February 2005, British journal of pharmacology,
Altar Sorkaç, and Michael A DiIorio, and Patrick J O'Hern, and Saba N Baskoylu, and Hannah K Graham, and Anne C Hart
December 2001, Developmental biology,
Altar Sorkaç, and Michael A DiIorio, and Patrick J O'Hern, and Saba N Baskoylu, and Hannah K Graham, and Anne C Hart
January 2014, PloS one,
Altar Sorkaç, and Michael A DiIorio, and Patrick J O'Hern, and Saba N Baskoylu, and Hannah K Graham, and Anne C Hart
February 1987, BioEssays : news and reviews in molecular, cellular and developmental biology,
Altar Sorkaç, and Michael A DiIorio, and Patrick J O'Hern, and Saba N Baskoylu, and Hannah K Graham, and Anne C Hart
June 2009, Proceedings of the National Academy of Sciences of the United States of America,
Altar Sorkaç, and Michael A DiIorio, and Patrick J O'Hern, and Saba N Baskoylu, and Hannah K Graham, and Anne C Hart
December 2002, Nature,
Altar Sorkaç, and Michael A DiIorio, and Patrick J O'Hern, and Saba N Baskoylu, and Hannah K Graham, and Anne C Hart
January 2022, The Journal of biological chemistry,
Altar Sorkaç, and Michael A DiIorio, and Patrick J O'Hern, and Saba N Baskoylu, and Hannah K Graham, and Anne C Hart
January 2014, Molecular and cellular neurosciences,
Copied contents to your clipboard!