Cochlear Mechanisms and Otoacoustic Emission Test Performance. 2019

Nikki A Go, and Greta C Stamper, and Tiffany A Johnson
Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, Kansas.

This study aims to determine the impact of controlling cochlear-source mechanism on the accuracy with which auditory status is identified using otoacoustic emissions (OAEs) in two groups of subjects with normal hearing (NH) and subjects with mild to moderate hearing loss. Data were collected from 212 subjects with NH and with mild to moderate hearing loss who fell into two categories based on a distortion product OAE (DPOAE) screening protocol: the uncertain-identification group (where errors were likely) and the certain-identification group (where errors were unlikely). DPOAE fine-structure patterns were recorded at intervals surrounding f2 = 1, 2 and 4 kHz (f2/f1 ratio = 1.22), with L2 = 35, 45, and 55 dB SPL (L1/L2 ratio = 10 dB). The discrete cosine transform was used to smooth fine structure, limiting the source contribution to the distortion source only. Reflection-source OAEs were also recorded using amplitude-modulated stimulus frequency OAEs (AM-SFOAE). Area under the relative operating characteristic (AROC) curve was used to quantify test accuracy when the source contribution was controlled versus the condition where both sources contribute. Additionally, failure rate, fixed at 5% for NH ears, as a function of behavioral-threshold category was evaluated. When data for the entire subject group were examined, reducing the reflection-source contribution to the DPOAE did not result in better test performance than the best control condition at any frequency tested. When the subjects with NH were restricted to those with confirmed fine structure, AROC analyses indicated that reducing the reflection-source contribution resulted in several small increases in the accuracy (2%-5%) with which auditory status was identified relative to the best control condition. This improvement was observed for the lowest stimulus levels (i.e., L2 = 35 or 45 dB SPL). In this subset of subjects, distortion-source DPOAEs resulted in more accurate identification of mild hearing loss for a fixed false-positive rate of 5% in NH ears at lower L2's, conditions with poor accuracy in the larger group of subjects. The impact of controlling the source contribution on the identification of moderate losses was less clear in the reduced subject group, with some conditions where the distortion-source DPOAE was more accurate than the control condition and other conditions where there was no change. There was no evidence that reflection-source AM-SFOAEs more accurately identified ears with hearing loss when compared to any of the DPOAE conditions in either the large or reduced group of subjects. While improvements in test accuracy were observed for some subjects and some conditions (e.g., mild hearing losses and low stimulus levels in the reduced subset of subjects), these results suggest that restricting cochlear source contribution by "smoothing" DPOAE fine structure is not expected to improve DPOAE test accuracy in a general population of subjects. Likewise, recording reflection-source OAEs using the AM-SFOAE technique would not be expected to more accurately identify hearing status compared to mixed- or single-source DPOAEs.

UI MeSH Term Description Entries
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D005260 Female Females
D006319 Hearing Loss, Sensorineural Hearing loss resulting from damage to the COCHLEA and the sensorineural elements which lie internally beyond the oval and round windows. These elements include the AUDITORY NERVE and its connections in the BRAINSTEM. Deafness Neurosensory,Deafness, Neurosensory,Deafness, Sensoryneural,Neurosensory Deafness,Sensorineural Hearing Loss,Sensoryneural Deafness,Cochlear Hearing Loss,Hearing Loss, Cochlear,Deafnesses, Neurosensory,Deafnesses, Sensoryneural,Neurosensory Deafnesses,Sensoryneural Deafness,Sensoryneural Deafnesses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

Nikki A Go, and Greta C Stamper, and Tiffany A Johnson
October 2003, Lin chuang er bi yan hou ke za zhi = Journal of clinical otorhinolaryngology,
Nikki A Go, and Greta C Stamper, and Tiffany A Johnson
January 1986, Scandinavian audiology. Supplementum,
Nikki A Go, and Greta C Stamper, and Tiffany A Johnson
February 2011, Ear and hearing,
Nikki A Go, and Greta C Stamper, and Tiffany A Johnson
December 2007, The Journal of the Acoustical Society of America,
Nikki A Go, and Greta C Stamper, and Tiffany A Johnson
January 2011, Ear and hearing,
Nikki A Go, and Greta C Stamper, and Tiffany A Johnson
January 2010, American journal of otolaryngology,
Nikki A Go, and Greta C Stamper, and Tiffany A Johnson
January 1986, Hearing research,
Nikki A Go, and Greta C Stamper, and Tiffany A Johnson
January 2018, Ear and hearing,
Nikki A Go, and Greta C Stamper, and Tiffany A Johnson
January 2019, Ear and hearing,
Nikki A Go, and Greta C Stamper, and Tiffany A Johnson
December 1998, The Journal of otolaryngology,
Copied contents to your clipboard!