Phosphorylase a activity as an indicator of neutrophil activation by chemotactic peptide. 1985

J L Slonczewski, and M W Wilde, and S H Zigmond

The activity of glycogen phosphorylase, an enzyme that is activated by both cAMP and calcium, was used as an indicator of the state of the cytoplasm after chemotactic stimulation of polymorphonuclear leukocytes (neutrophils). The activity of the enzyme showed a clear dependence on cytoplasmic calcium. Addition of the calcium ionophore A23187 caused a 4-5-fold increase in activity of phosphorylase a. In the absence of external Ca2+, A23187 caused only brief transient activation of phosphorylase; probably reflecting release of sequestered intracellular Ca2+. Addition of the chemotactic peptide N-formylnorleucylleucylphenylalanine (FNLLP) caused a transient 2-3-fold activation of the enzyme. The dose-dependence of activation by FNLLP showed a peak at 10(-8) M, near the Kd of the receptor for FNLLP. The phosphorylase activity peaks by 90 s and then declines, returning to basal levels by 20 min after stimulation with 10(-8) M peptide and by 60 min with 10(-7) M peptide. This finding suggests that the cells do not need to maintain elevated cytoplasmic calcium levels to exhibit stimulated locomotion. Thus, if calcium continues to modulate the motility, there either must be highly localized changes that are not detected in measures of the total cytoplasm, or the sensitivity to calcium must be variable such that basal levels are sufficient to maintain locomotion. Cells loaded with the fluorescence calcium probe quin2 (0.6 mM) in the presence or absence of external Ca2+ had elevated phosphorylase levels before addition of FNLLP. Thus, the presence of quin2 may alter the cytoplasmic Ca2+ level, and it clearly alters some aspects of the neutrophil physiology. Phosphorylase a appears to be a sensitive, nonperturbing indicator of the cytoplasmic calcium levels.

UI MeSH Term Description Entries
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D010762 Phosphorylase a The active form of GLYCOGEN PHOSPHORYLASE that is derived from the phosphorylation of PHOSPHORYLASE B. Phosphorylase a is deactivated via hydrolysis of phosphoserine by PHOSPHORYLASE PHOSPHATASE to form PHOSPHORYLASE B.
D010763 Phosphorylase b The inactive form of GLYCOGEN PHOSPHORYLASE that is converted to the active form PHOSPHORYLASE A via phosphorylation by PHOSPHORYLASE KINASE and ATP.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002630 Chemotactic Factors Chemical substances that attract or repel cells. The concept denotes especially those factors released as a result of tissue injury, microbial invasion, or immunologic activity, that attract LEUKOCYTES; MACROPHAGES; or other cells to the site of infection or insult. Chemoattractant,Chemotactic Factor,Chemotaxin,Chemotaxins,Cytotaxinogens,Cytotaxins,Macrophage Chemotactic Factor,Chemoattractants,Chemotactic Factors, Macrophage,Macrophage Chemotactic Factors,Chemotactic Factor, Macrophage,Factor, Chemotactic,Factor, Macrophage Chemotactic
D002634 Chemotaxis, Leukocyte The movement of leukocytes in response to a chemical concentration gradient or to products formed in an immunologic reaction. Leukotaxis,Leukocyte Chemotaxis
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

J L Slonczewski, and M W Wilde, and S H Zigmond
January 2000, Biofizika,
J L Slonczewski, and M W Wilde, and S H Zigmond
January 1986, Life support systems : the journal of the European Society for Artificial Organs,
J L Slonczewski, and M W Wilde, and S H Zigmond
January 1972, Journal of periodontal research,
J L Slonczewski, and M W Wilde, and S H Zigmond
July 1990, The Journal of biological chemistry,
J L Slonczewski, and M W Wilde, and S H Zigmond
February 1983, Journal of immunology (Baltimore, Md. : 1950),
J L Slonczewski, and M W Wilde, and S H Zigmond
January 1992, Archivum immunologiae et therapiae experimentalis,
J L Slonczewski, and M W Wilde, and S H Zigmond
May 1979, Infection and immunity,
J L Slonczewski, and M W Wilde, and S H Zigmond
February 1983, Biochimica et biophysica acta,
J L Slonczewski, and M W Wilde, and S H Zigmond
June 1997, Inflammation,
Copied contents to your clipboard!