Live imaging of cell division in preimplantation mouse embryos using inverted light-sheet microscopy. 2018

Judith Reichmann, and Manuel Eguren, and Yu Lin, and Isabell Schneider, and Jan Ellenberg
European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.

Systematic studies of cell divisions at the beginning of mammalian life are of fundamental importance for our understanding of embryonic development and fertility. However, in the past the challenges of in vitro embryo culture and the embryo's pronounced light sensitivity have precluded a detailed investigation of preimplantation cell divisions. This protocol is based on recent technological breakthroughs in inverted light microscopy tailored for mouse embryology. Due to its reduced light dose, and therefore low phototoxicity, as well as higher acquisition speed, light-sheet microscopy allows extended 3D time-lapse imaging of early embryonic development with very high spatial and temporal resolution. This imaging approach enables imaging of key subcellular structures during the critical cell cycles from the zygote up to the blastocyst stage, with a resolution that allows automatic computational tracking and quantitative analysis of the dynamics of mitotic organelles.

UI MeSH Term Description Entries
D008853 Microscopy The use of instrumentation and techniques for visualizing material and details that cannot be seen by the unaided eye. It is usually done by enlarging images, transmitted by light or electron beams, with optical or magnetic lenses that magnify the entire image field. With scanning microscopy, images are generated by collecting output from the specimen in a point-by-point fashion, on a magnified scale, as it is scanned by a narrow beam of light or electrons, a laser, a conductive probe, or a topographical probe. Compound Microscopy,Hand-Held Microscopy,Light Microscopy,Optical Microscopy,Simple Microscopy,Hand Held Microscopy,Microscopy, Compound,Microscopy, Hand-Held,Microscopy, Light,Microscopy, Optical,Microscopy, Simple
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005260 Female Females
D005298 Fertility The capacity to conceive or to induce conception. It may refer to either the male or female. Fecundity,Below Replacement Fertility,Differential Fertility,Fecundability,Fertility Determinants,Fertility Incentives,Fertility Preferences,Fertility, Below Replacement,Marital Fertility,Natural Fertility,Subfecundity,World Fertility Survey,Determinant, Fertility,Determinants, Fertility,Fertility Determinant,Fertility Incentive,Fertility Preference,Fertility Survey, World,Fertility Surveys, World,Fertility, Differential,Fertility, Marital,Fertility, Natural,Preference, Fertility,Preferences, Fertility,Survey, World Fertility,Surveys, World Fertility,World Fertility Surveys
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015053 Zygote The fertilized OVUM resulting from the fusion of a male and a female gamete. Fertilized Ovum,Ovum, Fertilized,Fertilized Egg,Egg, Fertilized,Eggs, Fertilized,Fertilized Eggs,Zygotes

Related Publications

Judith Reichmann, and Manuel Eguren, and Yu Lin, and Isabell Schneider, and Jan Ellenberg
November 2014, Development (Cambridge, England),
Judith Reichmann, and Manuel Eguren, and Yu Lin, and Isabell Schneider, and Jan Ellenberg
January 2018, Methods in molecular biology (Clifton, N.J.),
Judith Reichmann, and Manuel Eguren, and Yu Lin, and Isabell Schneider, and Jan Ellenberg
March 2014, Nature protocols,
Judith Reichmann, and Manuel Eguren, and Yu Lin, and Isabell Schneider, and Jan Ellenberg
March 2021, Journal of microscopy,
Judith Reichmann, and Manuel Eguren, and Yu Lin, and Isabell Schneider, and Jan Ellenberg
December 2011, Cell division,
Judith Reichmann, and Manuel Eguren, and Yu Lin, and Isabell Schneider, and Jan Ellenberg
January 2018, Methods in molecular biology (Clifton, N.J.),
Judith Reichmann, and Manuel Eguren, and Yu Lin, and Isabell Schneider, and Jan Ellenberg
August 2016, Journal of microscopy,
Judith Reichmann, and Manuel Eguren, and Yu Lin, and Isabell Schneider, and Jan Ellenberg
January 2017, Advances in experimental medicine and biology,
Judith Reichmann, and Manuel Eguren, and Yu Lin, and Isabell Schneider, and Jan Ellenberg
January 2015, Molecular reproduction and development,
Judith Reichmann, and Manuel Eguren, and Yu Lin, and Isabell Schneider, and Jan Ellenberg
January 2022, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!