Naloxone inhibits superoxide release from human neutrophils. 1985

C O Simpkins, and N Ives, and E Tate, and M Johnson

Using the superoxide dismutase inhibitable reduction of cytochrome c assay, we studied, the effect of (-) naloxone on N-formyl-methionyl-leucyl-phenylalanine (FMLP) stimulated superoxide (O2-) release from human neutrophils. Neutrophils were pre-incubated with the range of concentrations of (-) naloxone that is administered in models of experimental sepsis (10(-6) - 10(-4.5) M). (-) Naloxone inhibited O2- release in a dose dependent manner. 02- produced by a cell-free xanthine-xanthine oxidase system was not inhibited by (-) naloxone, indicating that (-) naloxone was not scavanging O2-. There was no difference between the effect of (-) and (+) naloxone suggesting that the inhibition of O2- was not specific for an opiate receptor. Another opiate antagonist, nalorphine, as well as the opiate agonist, morphine, also inhibited O2- release in the same concentration range. There was no difference between the effect of naloxone and morphine.

UI MeSH Term Description Entries
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion

Related Publications

C O Simpkins, and N Ives, and E Tate, and M Johnson
March 1991, Proceedings of the National Academy of Sciences of the United States of America,
C O Simpkins, and N Ives, and E Tate, and M Johnson
February 1998, Biological & pharmaceutical bulletin,
C O Simpkins, and N Ives, and E Tate, and M Johnson
January 2006, Antioxidants & redox signaling,
C O Simpkins, and N Ives, and E Tate, and M Johnson
April 1992, European journal of pharmacology,
C O Simpkins, and N Ives, and E Tate, and M Johnson
April 1988, Thrombosis and haemostasis,
C O Simpkins, and N Ives, and E Tate, and M Johnson
December 1984, Inflammation,
C O Simpkins, and N Ives, and E Tate, and M Johnson
July 1990, Journal of leukocyte biology,
C O Simpkins, and N Ives, and E Tate, and M Johnson
December 2000, Infection and immunity,
C O Simpkins, and N Ives, and E Tate, and M Johnson
October 1984, The Journal of biological chemistry,
C O Simpkins, and N Ives, and E Tate, and M Johnson
December 2005, Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia,
Copied contents to your clipboard!