Overexpression of FGF19 alleviates hypoxia/reoxygenation-induced injury of cardiomyocytes by regulating GSK-3β/Nrf2/ARE signaling. 2018

Yuan Fang, and Yan Zhao, and Shaohua He, and Tongshuai Guo, and Qing Song, and Ning Guo, and Zuyi Yuan
Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta Xi Street, Xi'an, 710061, Shaanxi, China. Electronic address: fang_yuanfy@163.com.

Fibroblast growth factor 19 (FGF19) has emerged as a crucial cytoprotective regulator that antagonizes cell apoptosis and oxidative stress under adverse conditions. However, whether FGF19 plays a cytoprotective role in preventing myocardial damage during myocardial ischemia/reperfusion injury remains unknown. In this study, we aimed to investigate the potential role of FGF19 in regulating hypoxia/reoxygenation (H/R)-induced injury of cardiomyocytes in vitro. We found that FGF19 expression was upregulated in response to H/R treatment in cardiomyocytes. Silencing of FGF19 significantly inhibited viability and increased apoptosis and reactive oxygen species (ROS) generation in cardiomyocytes with H/R treatment. In contrast, overexpression of FGF19 improved viability and inhibited apoptosis and ROS generation induced by H/R treatment, showing a cardioprotective effect. Moreover, we found that FGF19 regulated the phosphorylation of glycogen synthase kinase-3β (GSK-3β) and the nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2). In addition, FGF19 promoted the activation of Nrf2-mediated antioxidant response element (ARE) antioxidant signaling. Notably, treatment with a GSK-3β inhibitor significantly abrogated the adverse effects of FGF19 silencing on H/R-induced injury, whereas silencing of Nrf2 partially blocked the FGF19-mediated cardioprotective effect against H/R-induced injury in cardiomyocytes. Taken together, our findings demonstrate that FGF19 alleviates H/R-induced apoptosis and oxidative stress in cardiomyocytes by inhibiting GSK-3β activity and promoting the activation of Nrf2/ARE signaling, providing a potential therapeutic target for prevention of myocardial injury.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005346 Fibroblast Growth Factors A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family. DNA Synthesis Factor,Fibroblast Growth Factor,Fibroblast Growth Regulatory Factor,Growth Factor, Fibroblast,Growth Factors, Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071679 Glycogen Synthase Kinase 3 beta A glycogen synthase kinase-3 type enzyme that functions in ENERGY METABOLISM; EMBRYONIC DEVELOPMENT; and NEUROGENESIS. It is also involved in PROTEIN BIOSYNTHESIS and regulates cell growth and proliferation as a component of the WNT SIGNALING PATHWAY and other signaling pathways. Certain polymorphisms in the GSK3B gene have been associated with PARKINSON DISEASE; ALZHEIMER DISEASE; and BIPOLAR DISORDER. GSK-3beta,GSK3B Protein,GSK3beta,GSK 3beta
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015428 Myocardial Reperfusion Injury Damage to the MYOCARDIUM resulting from MYOCARDIAL REPERFUSION (restoration of blood flow to ischemic areas of the HEART.) Reperfusion takes place when there is spontaneous thrombolysis, THROMBOLYTIC THERAPY, collateral flow from other coronary vascular beds, or reversal of vasospasm. Reperfusion Injury, Myocardial,Injury, Myocardial Reperfusion,Myocardial Ischemic Reperfusion Injury,Injuries, Myocardial Reperfusion,Myocardial Reperfusion Injuries,Reperfusion Injuries, Myocardial
D015687 Cell Hypoxia A condition of decreased oxygen content at the cellular level. Anoxia, Cellular,Cell Anoxia,Hypoxia, Cellular,Anoxia, Cell,Anoxias, Cell,Anoxias, Cellular,Cell Anoxias,Cell Hypoxias,Cellular Anoxia,Cellular Anoxias,Cellular Hypoxia,Cellular Hypoxias,Hypoxia, Cell,Hypoxias, Cell,Hypoxias, Cellular
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D051267 NF-E2-Related Factor 2 A basic-leucine zipper transcription factor that was originally described as a transcriptional regulator controlling expression of the BETA-GLOBIN gene. It may regulate the expression of a wide variety of genes that play a role in protecting cells from oxidative damage. Nfe2l2 Protein,Nuclear Factor (Erythroid-Derived 2)-Like 2 Protein,Nuclear Factor E2-Related Factor 2,NF E2 Related Factor 2,Nuclear Factor E2 Related Factor 2

Related Publications

Yuan Fang, and Yan Zhao, and Shaohua He, and Tongshuai Guo, and Qing Song, and Ning Guo, and Zuyi Yuan
October 2020, Biochemical and biophysical research communications,
Yuan Fang, and Yan Zhao, and Shaohua He, and Tongshuai Guo, and Qing Song, and Ning Guo, and Zuyi Yuan
October 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Yuan Fang, and Yan Zhao, and Shaohua He, and Tongshuai Guo, and Qing Song, and Ning Guo, and Zuyi Yuan
May 2018, Journal of biochemical and molecular toxicology,
Yuan Fang, and Yan Zhao, and Shaohua He, and Tongshuai Guo, and Qing Song, and Ning Guo, and Zuyi Yuan
January 2022, Evidence-based complementary and alternative medicine : eCAM,
Yuan Fang, and Yan Zhao, and Shaohua He, and Tongshuai Guo, and Qing Song, and Ning Guo, and Zuyi Yuan
February 2020, Bioscience reports,
Yuan Fang, and Yan Zhao, and Shaohua He, and Tongshuai Guo, and Qing Song, and Ning Guo, and Zuyi Yuan
January 2023, Evidence-based complementary and alternative medicine : eCAM,
Yuan Fang, and Yan Zhao, and Shaohua He, and Tongshuai Guo, and Qing Song, and Ning Guo, and Zuyi Yuan
September 2019, Biochemical and biophysical research communications,
Yuan Fang, and Yan Zhao, and Shaohua He, and Tongshuai Guo, and Qing Song, and Ning Guo, and Zuyi Yuan
August 2019, Biochimie,
Yuan Fang, and Yan Zhao, and Shaohua He, and Tongshuai Guo, and Qing Song, and Ning Guo, and Zuyi Yuan
August 2018, Shock (Augusta, Ga.),
Yuan Fang, and Yan Zhao, and Shaohua He, and Tongshuai Guo, and Qing Song, and Ning Guo, and Zuyi Yuan
February 2018, Regulatory toxicology and pharmacology : RTP,
Copied contents to your clipboard!