Hybrid dysgenesis in Drosophila melanogaster: nature and inheritance of P element regulation. 1985

M G Kidwell

The genetic determination of the control of resistance or susceptibility to germ line changes mediated by P elements was studied in two strains and in derivatives of crosses between them. One strain, characterized as true M, completely lacked P elements. The second strain, pseudo-M (M'), carried a number of P elements, but these did not have the potential to induce the gonadal sterility that is associated with P-M hybrid dysgenesis. Individuals from the true M strain were invariably unable to suppress P factor activity (i.e., all daughters of outcrosses of M females and P males were sterile). In contrast, individuals from the M' strain showed variable degrees of suppression that were manifested in a wide range of gonadal sterility frequencies in standard tests. This continuous distribution pattern was reproducible for more than 25 generations.--The results of the genetic analysis indicate that a strain with a variable degree of suppression of gonadal dysgenesis is not necessarily in a transient state between the extreme conditions of P and M cytotype. A large variance in the ability to suppress gonadal dysgenesis with a mean value intermediate between the extremes of P and M cytotype may be a relatively stable strain characteristic. No reciprocal cross effect was observed in the suppression of sterility of F1 females from M X M' matings. Thus, the existence of M' strains indicates a Mendelian component in P element regulation and suggests that cytotype, which has an extrachromosomal aspect, may be only one of perhaps several mechanisms involved in regulation. Analysis of the effects of individual chromosomes from the M' strain showed that each chromosome contributed to the reduction of gonadal dysgenesis in the progeny of test matings. The results are consistent with a one-component titration model for P element regulation.

UI MeSH Term Description Entries
D007247 Infertility, Female Diminished or absent ability of a female to achieve conception. Sterility, Female,Sterility, Postpartum,Sub-Fertility, Female,Subfertility, Female,Female Infertility,Female Sterility,Female Sub-Fertility,Female Subfertility,Postpartum Sterility,Sub Fertility, Female
D008297 Male Males
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006059 Gonadal Dysgenesis A number of syndromes with defective gonadal developments such as streak GONADS and dysgenetic testes or ovaries. The spectrum of gonadal and sexual abnormalities is reflected in their varied sex chromosome (SEX CHROMOSOMES) constitution as shown by the karyotypes of 45,X monosomy (TURNER SYNDROME); 46,XX (GONADAL DYSGENESIS, 46XX); 46,XY (GONADAL DYSGENESIS, 46,XY); and sex chromosome MOSAICISM; (GONADAL DYSGENESIS, MIXED). Their phenotypes range from female, through ambiguous, to male. This concept includes gonadal agenesis. Gonadal Agenesis,Dysgenesis, Gonadal
D006824 Hybridization, Genetic The genetic process of crossbreeding between genetically dissimilar parents to produce a hybrid. Crossbreeding,Hybridization, Intraspecies,Crossbreedings,Genetic Hybridization,Genetic Hybridizations,Hybridizations, Genetic,Hybridizations, Intraspecies,Intraspecies Hybridization,Intraspecies Hybridizations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
Copied contents to your clipboard!