Dose-dependent cytokinetic changes following 1-beta-D-arabinofuranosylcytosine and hydroxyurea in L1210 and S-180 in vivo. 1978

M J Straus, and R E Moran

DNA synthesis inhibition and recovery in L1210 and S-180 ascites tumors following 1-beta-D-arabinofuranosylcytosine (Ara-C) and hydroxyurea (HU) were measured autoradiographically as a basis for optimizing drug schedules. Tumor bearing mice, 10(6) cells day 0, were treated on day 4 with 20, 200 or 2000 mg/kg Ara-C or 50, 300 or 1800 mg/kg HU. At various intervals following drug, [3H]thymidine was administered i.p. and mice were killed 1 hr later. Tumor cells were analyzed for labeling index (LI) and grain count (GC) to determine the percentage of cells in S phase and the distribution of DNA synthesis rates among the labeled cells, respectively. Following each dose of HU, DNA synthesis was inhibited completely. Recovery of LI was rapid and approached control values by 6 hr. Following each dose of Ara-C, DNA synthesis was inhibited completely for at least 6 hr. Recovery of LI was first noted 6 hr following 20 mg/kg Ara-C and 9 hr following 200 mg/kg. Following both doses the LI reached 100% of the control value by 26 hr. GC analysis indicated that following Ara-C treatment, DNA synthesis was reinitiated first with cells with low GC from 6 to 12 hr followed by cells with increasing GC from 12 to 20 hr. The labeling intensity reached control values by 20 hr and an 'overshoot' occurred by 26 hr. These data suggest that the recovery of DNA synthesis rate is a gradual process. Survival data for mice receiving two doses of Ara-C indicated that the optimal interval for retreatment following the lower dose of Ara-C occurred by 6 hr as compared to 12--16 hr for the higher dose. These times coincided in both instances with recovery of LI to 33--50% of control values. Early recovery of LI may be the best method currently available for estimating the optimal time for retreatment with an S phase specific drug.

UI MeSH Term Description Entries
D007939 Leukemia L1210 An experimental LYMPHOCYTIC LEUKEMIA of mice. Leukemia L 1210,L 1210, Leukemia,L1210, Leukemia
D008297 Male Males
D003561 Cytarabine A pyrimidine nucleoside analog that is used mainly in the treatment of leukemia, especially acute non-lymphoblastic leukemia. Cytarabine is an antimetabolite antineoplastic agent that inhibits the synthesis of DNA. Its actions are specific for the S phase of the cell cycle. It also has antiviral and immunosuppressant properties. (From Martindale, The Extra Pharmacopoeia, 30th ed, p472) Ara-C,Arabinofuranosylcytosine,Arabinosylcytosine,Cytosine Arabinoside,Aracytidine,Aracytine,Cytarabine Hydrochloride,Cytonal,Cytosar,Cytosar-U,beta-Ara C,Ara C,Arabinoside, Cytosine,Cytosar U,beta Ara C
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D005260 Female Females
D006918 Hydroxyurea An antineoplastic agent that inhibits DNA synthesis through the inhibition of ribonucleoside diphosphate reductase. Hydroxycarbamid,Hydrea,Oncocarbide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

M J Straus, and R E Moran
April 1977, Journal of the National Cancer Institute,
M J Straus, and R E Moran
December 1988, European journal of cancer & clinical oncology,
Copied contents to your clipboard!