Synthesis and Anticonvulsant Activity of 3-(alkylamino, alkoxy)-1,3,4,5- Tetrahydro-2H-benzo [b] azepine-2-one Derivatives. 2018

Xia Huang, and Tie Chen, and Rong-Bi Han, and Feng-Yu Piao
Department of Chemistry, College of Science, Yanbian University, Yanji 133002, Jilin Province, China.

A series of novel 3-Substituted-1,3,4,5-Tetrahydro-2H-benzo [b] azepine-2-one Derivatives (4, 5, 7, 10, 12, 5a-j, 8a-e) were synthesized from 1,2,3,4-Tetrahydro-1- naphthalenone. The structures of these compounds were confirmed by IR, 1H NMR, 13C NMR, MASS spectra and elemental analysis. Their anticonvulsant activity was evaluated by the maximal electroshock (MES) test, subcutaneous pentylenetetrazol (scPTZ) test, and their neurotoxicity was evaluated by the rotarod neurotoxicity test. Compound 4 showed the maximum anticonvulsant activity against the maximal electroshock test (ED50=26.4, PI =3.2) and against the subcutaneous pentylenetetrazol test (ED50=40.2, PI =2.1). Possible structure-activity relationship was discussed.

UI MeSH Term Description Entries
D010433 Pentylenetetrazole A pharmaceutical agent that displays activity as a central nervous system and respiratory stimulant. It is considered a non-competitive GAMMA-AMINOBUTYRIC ACID antagonist. Pentylenetetrazole has been used experimentally to study seizure phenomenon and to identify pharmaceuticals that may control seizure susceptibility. Leptazole,Pentamethylenetetrazole,Pentetrazole,Cardiazol,Corasol,Corazol,Corazole,Korazol,Korazole,Metrazol,Metrazole,Pentazol,Pentylenetetrazol
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004597 Electroshock Induction of a stress reaction in experimental subjects by means of an electrical shock; applies to either convulsive or non-convulsive states. Electroconvulsive Shock,Electroconvulsive Shocks,Electroshocks,Shock, Electroconvulsive,Shocks, Electroconvulsive
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D000438 Alcohols Alkyl compounds containing a hydroxyl group. They are classified according to relation of the carbon atom: primary alcohols, R-CH2OH; secondary alcohols, R2-CHOH; tertiary alcohols, R3-COH. (From Grant & Hackh's Chemical Dictionary, 5th ed)
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000927 Anticonvulsants Drugs used to prevent SEIZURES or reduce their severity. Anticonvulsant,Anticonvulsant Drug,Anticonvulsive Agent,Anticonvulsive Drug,Antiepileptic,Antiepileptic Agent,Antiepileptic Agents,Antiepileptic Drug,Anticonvulsant Drugs,Anticonvulsive Agents,Anticonvulsive Drugs,Antiepileptic Drugs,Antiepileptics,Agent, Anticonvulsive,Agent, Antiepileptic,Agents, Anticonvulsive,Agents, Antiepileptic,Drug, Anticonvulsant,Drug, Anticonvulsive,Drug, Antiepileptic,Drugs, Anticonvulsant,Drugs, Anticonvulsive,Drugs, Antiepileptic
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Xia Huang, and Tie Chen, and Rong-Bi Han, and Feng-Yu Piao
September 2010, Medicinal chemistry (Shariqah (United Arab Emirates)),
Xia Huang, and Tie Chen, and Rong-Bi Han, and Feng-Yu Piao
June 2017, Bioorganic chemistry,
Xia Huang, and Tie Chen, and Rong-Bi Han, and Feng-Yu Piao
March 2010, Chemical & pharmaceutical bulletin,
Xia Huang, and Tie Chen, and Rong-Bi Han, and Feng-Yu Piao
April 2014, Archiv der Pharmazie,
Xia Huang, and Tie Chen, and Rong-Bi Han, and Feng-Yu Piao
June 2020, The Journal of organic chemistry,
Xia Huang, and Tie Chen, and Rong-Bi Han, and Feng-Yu Piao
September 2001, Farmaco (Societa chimica italiana : 1989),
Xia Huang, and Tie Chen, and Rong-Bi Han, and Feng-Yu Piao
September 2019, Heliyon,
Xia Huang, and Tie Chen, and Rong-Bi Han, and Feng-Yu Piao
January 2012, Bioorganic & medicinal chemistry letters,
Copied contents to your clipboard!