Effects of isoxuprine and nylidrin on adrenoreceptors in rat vas deferens. 1985

P W Abel, and A W Fox, and K P Minneman

The interaction of isoxuprine and nylidrin with alpha 1- and beta 2-adrenoreceptors in rat vas deferens was examined using radioligand binding assays and physiological studies in vitro. Isoxuprine and nylidrin have a greater affinity for binding to alpha 1 (isoxuprine KD = 59 +/- 15 nM; nylidrin KD = 41 +/- 3 nM) than beta 2-(isoxuprine KD = 3,900 +/- 500 nM; nylidrin KD = 900 +/- 50 nM) adrenoreceptors in rat vas deferens. Vas deferens from rats pretreated for 16-24 h with reserpine (3 mg/kg i.p.) were exposed to 10 microM phenoxybenzamine for 15 min to inactivate alpha-adrenoreceptors. Under these conditions high concentrations of both isoxuprine and nylidrin relaxed vas deferens contracted with 55 mM K+, however the relaxation was not blocked by the beta-adrenoreceptor antagonist propranolol (10 microM). Both isoxuprine and nylidrin were potent competitive antagonists of alpha 1-adrenoreceptor mediated contraction of vas deferens. pA2 values for isoxuprine (6.9 +/- .05) and nylidrin (7.1 +/- .08) agreed well with KD values for binding to alpha 1-adrenoreceptors in vas deferens. The greater potency of isoxuprine and nylidrin in inhibiting alpha 1-adrenoreceptors than binding to beta 2-adrenoreceptors or causing nonspecific relaxation suggest that alpha-adrenoreceptor antagonist actions of these drugs may be important in their ability to inhibit smooth muscle tone.

UI MeSH Term Description Entries
D007556 Isoxsuprine A beta-adrenergic agonist that causes direct relaxation of uterine and vascular smooth muscle. Its vasodilating actions are greater on the arteries supplying skeletal muscle than on those supplying skin. It is used in the treatment of peripheral vascular disease and in premature labor. Duvadilan,Isoxsuprine Hydrochloride,Hydrochloride, Isoxsuprine
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009756 Nylidrin A beta-adrenergic agonist. Nylidrin causes peripheral vasodilation, a positive inotropic effect, and increased gastric volume of gastric juice. It is used in the treatment of peripheral vascular disorders and premature labor. Arlidin,Bufenine,Buphenin,Buphenine,Dilatol,Nylidrin Hydrochloride,Hydrochloride, Nylidrin
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic

Related Publications

P W Abel, and A W Fox, and K P Minneman
September 1988, Journal of autonomic pharmacology,
P W Abel, and A W Fox, and K P Minneman
December 1981, Cellular and molecular neurobiology,
P W Abel, and A W Fox, and K P Minneman
June 1976, Archives internationales de pharmacodynamie et de therapie,
P W Abel, and A W Fox, and K P Minneman
October 2003, Pharmacological research,
P W Abel, and A W Fox, and K P Minneman
December 1995, General pharmacology,
P W Abel, and A W Fox, and K P Minneman
March 1986, Journal of autonomic pharmacology,
P W Abel, and A W Fox, and K P Minneman
June 1998, European journal of pharmacology,
P W Abel, and A W Fox, and K P Minneman
January 1988, General pharmacology,
P W Abel, and A W Fox, and K P Minneman
November 1990, Journal of pharmacobio-dynamics,
P W Abel, and A W Fox, and K P Minneman
May 1980, British journal of pharmacology,
Copied contents to your clipboard!