The pathogenicity of the A7, M9 and L10 strains of Semliki Forest virus for weanling mice and primary mouse brain cell cultures. 1985

M C Gates, and B J Sheahan, and M A O'Sullivan, and G J Atkins

The multiplication of the M9, A7 and L10 strains of Semliki Forest virus (SFV), both in weanling mice and primary mouse brain cell cultures, was compared. Following both intraperitoneal (i.p.) and intracerebral (i.c.) injection, the virulent L10 strain multiplied to higher titre in the mouse central nervous system (CNS) than did the less virulent M9 and A7 strains, whereas M9 multiplied to higher titre than A7. By the i.c. route, all three virus strains multiplied to higher titre than following i.p. injection. Multiplication of A7 and M9 in oligodendrocytes, but not neurons, was detected following i.c. injection. All three virus strains showed a tropism for cultured mouse glial cells rather than neurons. The L10 strain multiplied better in neurons than did A7 or M9. It is concluded that the mechanism of acute demyelination induced by the M9 and A7 strains is similar. Based on this and previous studies, it is proposed that infection of glial cells triggers immune-mediated demyelination. The virulence of the L10 strain is due to its ability to exceed a lethal threshold of damage to neurons before immune intervention can occur.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003711 Demyelinating Diseases Diseases characterized by loss or dysfunction of myelin in the central or peripheral nervous system. Clinically Isolated CNS Demyelinating Syndrome,Clinically Isolated Syndrome, CNS Demyelinating,Demyelinating Disorders,Demyelination,Demyelinating Disease,Demyelinating Disorder,Demyelinations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012672 Semliki forest virus A species of ALPHAVIRUS isolated in central, eastern, and southern Africa.

Related Publications

M C Gates, and B J Sheahan, and M A O'Sullivan, and G J Atkins
October 1984, Journal of the neurological sciences,
M C Gates, and B J Sheahan, and M A O'Sullivan, and G J Atkins
December 1974, British journal of experimental pathology,
M C Gates, and B J Sheahan, and M A O'Sullivan, and G J Atkins
June 1983, The Journal of general virology,
M C Gates, and B J Sheahan, and M A O'Sullivan, and G J Atkins
January 1981, Archives of virology,
M C Gates, and B J Sheahan, and M A O'Sullivan, and G J Atkins
October 1967, Journal of virology,
M C Gates, and B J Sheahan, and M A O'Sullivan, and G J Atkins
December 1977, British journal of experimental pathology,
M C Gates, and B J Sheahan, and M A O'Sullivan, and G J Atkins
February 1990, Neuropathology and applied neurobiology,
M C Gates, and B J Sheahan, and M A O'Sullivan, and G J Atkins
July 1997, The Journal of general virology,
M C Gates, and B J Sheahan, and M A O'Sullivan, and G J Atkins
January 1988, Annals of the New York Academy of Sciences,
M C Gates, and B J Sheahan, and M A O'Sullivan, and G J Atkins
January 1987, The Journal of general virology,
Copied contents to your clipboard!