Impact of new ICRU Report 90 recommendations on calculated correction factors for reference dosimetry. 2018

Damian Czarnecki, and Björn Poppe, and Klemens Zink
Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen, Giessen, Germany. University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany.

In 2016 the ICRU published a new report dealing with key data for ionizing radiation dosimetry (ICRU Report 90). New recommendations have been made for the mean excitation energies I for air, graphite and liquid water as well as for the graphite density to use when evaluating the density effect. In addition, the ICRU Report 90 discusses renormalized photoelectric cross sections, but refuses to give a recommendation on the use of renormalization factors. However, the Consultative Committee for Ionizing Radiation recommends to use renormalized photoeffect cross sections. Goal of the present work is to evaluate the impact of these new recommendations on clinical reference dosimetry for high energy photon and electron beams. The beam quality correction factor k Q was calculated by Monte Carlo simulations for compact and parallel plate ionization chambers. In case of photons seven phase space files from clinical accelerators and twelve spectra taken from literature from 4 MV to 24 MV and additionally a 60Co source were applied. As electron source thirteen electron spectra available in literature were used in the range of 4 MeV-21 MeV. The new ICRU recommendations have a small impact on Monte Carlo calculated k Q values for the chosen ionization chambers in the range of 0.1%-0.35% only-the difference increases for higher photon energies. The impact of the ICRU Report 90 recommendations on Monte Carlo calculated stopping power ratios s w,a , perturbation factors p and beam quality correction factors k Q was investigated and confirmed a decrese of s w,a by a fraction of a percent for photon and electron beams. This study indicates that the impact of the new ICRU recommendation is within 0.35%. The determined deviations should be taken into account, when widely published Monte Carlo calculated values are examined.

UI MeSH Term Description Entries
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D012015 Reference Standards A basis of value established for the measure of quantity, weight, extent or quality, e.g. weight standards, standard solutions, methods, techniques, and procedures used in diagnosis and therapy. Standard Preparations,Standards, Reference,Preparations, Standard,Standardization,Standards,Preparation, Standard,Reference Standard,Standard Preparation,Standard, Reference
D012062 Relative Biological Effectiveness The ratio of radiation dosages required to produce identical change based on a formula comparing other types of radiation with that of gamma or roentgen rays. Biological Effectiveness, Relative,Effectiveness, Biologic Relative,Effectiveness, Biological Relative,Relative Biologic Effectiveness,Biologic Effectiveness, Relative,Biologic Relative Effectiveness,Biological Relative Effectiveness,Effectiveness, Relative Biologic,Effectiveness, Relative Biological,Relative Effectiveness, Biologic
D017410 Practice Guidelines as Topic Works about directions or principles presenting current or future rules of policy for assisting health care practitioners in patient care decisions regarding diagnosis, therapy, or related clinical circumstances. The guidelines may be developed by government agencies at any level, institutions, professional societies, governing boards, or by the convening of expert panels. The guidelines form a basis for the evaluation of all aspects of health care and delivery. Clinical Guidelines as Topic,Best Practices,Best Practice
D017785 Photons Discrete concentrations of energy, apparently massless elementary particles, that move at the speed of light. They are the unit or quantum of electromagnetic radiation. Photons are emitted when electrons move from one energy state to another. (From Hawley's Condensed Chemical Dictionary, 11th ed)

Related Publications

Damian Czarnecki, and Björn Poppe, and Klemens Zink
June 2018, Medical physics,
Damian Czarnecki, and Björn Poppe, and Klemens Zink
September 2019, Physics in medicine and biology,
Damian Czarnecki, and Björn Poppe, and Klemens Zink
June 1999, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
Damian Czarnecki, and Björn Poppe, and Klemens Zink
October 2023, Radiation protection dosimetry,
Damian Czarnecki, and Björn Poppe, and Klemens Zink
September 2022, Journal of radiological protection : official journal of the Society for Radiological Protection,
Damian Czarnecki, and Björn Poppe, and Klemens Zink
January 2005, Radiation protection dosimetry,
Damian Czarnecki, and Björn Poppe, and Klemens Zink
January 2018, Practical radiation oncology,
Damian Czarnecki, and Björn Poppe, and Klemens Zink
January 2001, Radiation protection dosimetry,
Copied contents to your clipboard!