Immunosuppression of T lymphocyte function by fractionated serum from tumor-bearing mice. 1977

R McMaster, and K Buhler, and R Whitney, and J G Levy

Sera from mice with transplanted 3-methylcholantrene-induced tumors have been shown previously to inhibit the function of normal lymphoid cells. When chromatographed on Sephadex G-150, the fraction eluting with immunoglobulin has been shown to inhibit the proliferative response of normal spleen cells to concanavalin A and to inhibit the in vitro antibody response to a T-dependent antigen, but has a lesser effect on the antibody response to a T-independent antigen. This paper deals with studies on the mode of action of the serum factor. The immunoglobulin containing fraction of serum from tumor-bearing mice inhibited the in vitro generation of both allogeneic and syngeneic cytotoxic lymphocytes. Time course studies demonstrate that the serum fraction inhibits the generation of antibody-producing and cytotoxic lymphocytes if added during the first 2 days of a 5-day culture. Serum fractions added after day 2 had no effect on the in vitro response. The serum factor appears to inhibit the generation of specific T cell function during the proliferative stage of development but has no effect on the differentiation stage which leads to either antibody-producing cells or cytotoxic lymphocytes.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007165 Immunosuppression Therapy Deliberate prevention or diminution of the host's immune response. It may be nonspecific as in the administration of immunosuppressive agents (drugs or radiation) or by lymphocyte depletion or may be specific as in desensitization or the simultaneous administration of antigen and immunosuppressive drugs. Antirejection Therapy,Immunosuppression,Immunosuppressive Therapy,Anti-Rejection Therapy,Therapy, Anti-Rejection,Therapy, Antirejection,Anti Rejection Therapy,Anti-Rejection Therapies,Antirejection Therapies,Immunosuppression Therapies,Immunosuppressions,Immunosuppressive Therapies,Therapies, Immunosuppression,Therapies, Immunosuppressive,Therapy, Immunosuppression,Therapy, Immunosuppressive
D003601 Cytotoxicity Tests, Immunologic The demonstration of the cytotoxic effect on a target cell of a lymphocyte, a mediator released by a sensitized lymphocyte, an antibody, or complement. AHG-CDC Tests,Anti-Human Globulin Complement-Dependent Cytotoxicity Tests,Microcytotoxicity Tests,Anti Human Globulin Complement Dependent Cytotoxicity Tests,Anti-Human Globulin Complement-Dependent Cytotoxicity Test,Antiglobulin-Augmented Lymphocytotoxicity Test,Antiglobulin-Augmented Lymphocytotoxicity Tests,Cytotoxicity Test, Immunologic,Cytotoxicity Tests, Anti-Human Globulin Complement-Dependent,Cytotoxicity Tests, Immunological,Immunologic Cytotoxicity Test,Immunologic Cytotoxicity Tests,Lymphocytotoxicity Test, Antiglobulin-Augmented,Lymphocytotoxicity Tests, Antiglobulin-Augmented,Microcytotoxicity Test,AHG CDC Tests,AHG-CDC Test,Anti Human Globulin Complement Dependent Cytotoxicity Test,Antiglobulin Augmented Lymphocytotoxicity Test,Antiglobulin Augmented Lymphocytotoxicity Tests,Cytotoxicity Test, Immunological,Cytotoxicity Tests, Anti Human Globulin Complement Dependent,Immunological Cytotoxicity Test,Immunological Cytotoxicity Tests,Lymphocytotoxicity Test, Antiglobulin Augmented,Lymphocytotoxicity Tests, Antiglobulin Augmented
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody
D012208 Rhabdomyosarcoma A malignant solid tumor arising from mesenchymal tissues which normally differentiate to form striated muscle. It can occur in a wide variety of sites. It is divided into four distinct types: pleomorphic, predominantly in male adults; alveolar (RHABDOMYOSARCOMA, ALVEOLAR), mainly in adolescents and young adults; embryonal (RHABDOMYOSARCOMA, EMBRYONAL), predominantly in infants and children; and botryoidal, also in young children. It is one of the most frequently occurring soft tissue sarcomas and the most common in children under 15. (From Dorland, 27th ed; Holland et al., Cancer Medicine, 3d ed, p2186; DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, pp1647-9) Rhabdomyosarcomas
D012513 Sarcoma, Experimental Experimentally induced neoplasms of CONNECTIVE TISSUE in animals to provide a model for studying human SARCOMA. EHS Tumor,Sarcoma, Engelbreth-Holm-Swarm,Sarcoma, Jensen,Experimental Sarcoma,Experimental Sarcomas,Sarcomas, Experimental,Engelbreth-Holm-Swarm Sarcoma,Jensen Sarcoma,Sarcoma, Engelbreth Holm Swarm,Tumor, EHS
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

R McMaster, and K Buhler, and R Whitney, and J G Levy
November 1976, International journal of cancer,
R McMaster, and K Buhler, and R Whitney, and J G Levy
September 1977, International journal of cancer,
R McMaster, and K Buhler, and R Whitney, and J G Levy
June 1995, Cancer immunology, immunotherapy : CII,
R McMaster, and K Buhler, and R Whitney, and J G Levy
August 1976, Journal of the National Cancer Institute,
R McMaster, and K Buhler, and R Whitney, and J G Levy
January 1979, International journal of immunopharmacology,
R McMaster, and K Buhler, and R Whitney, and J G Levy
January 1981, Immunological communications,
R McMaster, and K Buhler, and R Whitney, and J G Levy
January 1992, Cancer immunology, immunotherapy : CII,
R McMaster, and K Buhler, and R Whitney, and J G Levy
April 1976, Immunology,
R McMaster, and K Buhler, and R Whitney, and J G Levy
September 1976, European journal of cancer,
R McMaster, and K Buhler, and R Whitney, and J G Levy
June 1976, Science (New York, N.Y.),
Copied contents to your clipboard!