Nucleotide sequence of cDNA clones of the murine myb proto-oncogene. 1985

T J Gonda, and N M Gough, and A R Dunn, and J de Blaquiere

We have isolated cDNA clones of murine c-myb mRNA which contain approximately 2.8 kb of the 3.9-kb mRNA sequence. Nucleotide sequencing has shown that these clones extend both 5' and 3' to sequences homologous to the v-myb oncogenes of avian myeloblastosis virus and avian leukemia virus E26. The sequence contains an open reading frame of 1944 nucleotides, and could encode a protein which is both highly homologous, and of similar size (71 kd), to the chicken c-myb protein. Examination of the deduced amino acid sequence of the murine c-myb protein revealed the presence of a 3-fold tandem repeat of 52 residues near the N terminus of the protein, and has enabled prediction of some of the likely structural features of the protein. These include a high alpha-helix content, a basic region toward the N terminus of the protein and an overall globular configuration. The arrangement of genomic c-myb sequences, detected using the cDNA clones as probes, was compared with the reported structure of rearranged c-myb in certain tumour cells. This comparison suggested that the rearranged c-myb gene may encode a protein which, like the v-myb protein, lacks the N-terminal region of c-myb.

UI MeSH Term Description Entries
D009189 Avian Myeloblastosis Virus A species of ALPHARETROVIRUS causing anemia in fowl. Myeloblastosis Virus, Avian,Avian Myeloblastosis Viruses,Myeloblastosis Viruses, Avian,Virus, Avian Myeloblastosis,Viruses, Avian Myeloblastosis
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011519 Proto-Oncogenes Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc. Proto-Oncogene,Proto Oncogene,Proto Oncogenes
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

T J Gonda, and N M Gough, and A R Dunn, and J de Blaquiere
December 1988, Nucleic acids research,
T J Gonda, and N M Gough, and A R Dunn, and J de Blaquiere
April 1994, Gene,
T J Gonda, and N M Gough, and A R Dunn, and J de Blaquiere
February 1993, Nucleic acids research,
T J Gonda, and N M Gough, and A R Dunn, and J de Blaquiere
October 1988, Nucleic acids research,
T J Gonda, and N M Gough, and A R Dunn, and J de Blaquiere
September 1990, Nucleic acids research,
T J Gonda, and N M Gough, and A R Dunn, and J de Blaquiere
January 2000, DNA sequence : the journal of DNA sequencing and mapping,
T J Gonda, and N M Gough, and A R Dunn, and J de Blaquiere
February 1992, Oncogene,
T J Gonda, and N M Gough, and A R Dunn, and J de Blaquiere
January 1996, Current topics in microbiology and immunology,
T J Gonda, and N M Gough, and A R Dunn, and J de Blaquiere
January 1989, Oncogene research,
T J Gonda, and N M Gough, and A R Dunn, and J de Blaquiere
January 1986, Nature,
Copied contents to your clipboard!