Regulation by magnesium of intracellular calcium movement in skinned muscle fibers. 1977

E W Stephenson, and R J Podolsky

The effect of Mg on Ca movement between the sarcoplasmic reticulum (SR) and myofilament space (MFS) was studied in skinned muscle fibers by using isometric force as an indicator of MFS Ca. In Ca-loaded fibers at 20 degrees C, the large force spike induced by Ca in 1 mM Mg (5 mM ATP) was strongly inhibited in 3 mM Mg, and force development was extremely slow. After a brief Ca stimulus in 1 mM Mg, relaxation in Ca-free solution was significantly faster in 3 mM Mg. These changes were due to altered Ca movements, since the effect of 3 mM Mg on steady force in CaEGTA solutions was small. Changes in Mg alone induced force transients apparently due to altered Ca movement. In relaxed fibers, decreasing the Mg to 0.25 mM caused phasic force development. In contracting fibers in Ca solutions, increasing the Mg caused a large transient relaxation. The effects of increased Mg were antagonized by 0.5 mM Cd, an inhibitor of the SR Ca transport system. The results indicate that active Ca uptake by the SR in situ is stimulated by Mg, and that it can affect local MFS [Ca++] in the presence of a substantial Ca source. These results provide evidence that an increased rate of Ca uptake in 3 mM Mg could account for inhibition of the large force spike associated with Ca-induced Ca release in skinned fibers.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums

Related Publications

E W Stephenson, and R J Podolsky
May 1982, Federation proceedings,
E W Stephenson, and R J Podolsky
October 1983, Biophysical journal,
E W Stephenson, and R J Podolsky
December 2006, Archives of biochemistry and biophysics,
E W Stephenson, and R J Podolsky
May 1972, The Journal of physiology,
E W Stephenson, and R J Podolsky
April 1987, Canadian journal of physiology and pharmacology,
E W Stephenson, and R J Podolsky
May 1978, Neurology,
E W Stephenson, and R J Podolsky
October 1981, Federation proceedings,
E W Stephenson, and R J Podolsky
March 1989, The Journal of general physiology,
Copied contents to your clipboard!