Cloning and localization of the Bacillus subtilis chromosome replication terminus, terC. 1985

M T Smith, and C Aynsley, and R G Wake

A 10.9-kb segment of the Bacillus subtilis 168 chromosome has been cloned in an Escherichia coli plasmid and shown to contain terC (the replication terminus of the chromosome). The terC-containing portion of this plasmid has been subcloned within each of two overlapping fragments of DNA, 1.75 and 1.95 kb, again in E. coli plasmids. These have afforded a more precise definition of the location of terC in the B. subtilis chromosome and provided material for a detailed analysis of the structure and functioning of this site.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto

Related Publications

M T Smith, and C Aynsley, and R G Wake
July 1982, Journal of bacteriology,
M T Smith, and C Aynsley, and R G Wake
September 1983, Gene,
M T Smith, and C Aynsley, and R G Wake
September 1984, Journal of general microbiology,
M T Smith, and C Aynsley, and R G Wake
October 1987, Nucleic acids research,
M T Smith, and C Aynsley, and R G Wake
December 1983, Journal of molecular biology,
M T Smith, and C Aynsley, and R G Wake
November 1975, Journal of bacteriology,
M T Smith, and C Aynsley, and R G Wake
November 1984, Journal of molecular biology,
Copied contents to your clipboard!