Vascular neuroeffector function in two-kidney, one clip hypertensive dogs. 1985

N Toda, and M Miyazaki, and T Okamura

In control dogs and those made hypertensive for 1 and 8 months by partially occluding a renal artery, contractile responses of mesenteric artery strips to adrenergic nerve stimulation and to norepinephrine, plasma renin activity and vascular angiotensin converting enzyme (ACE) activity were compared. Contractile responses to norepinephrine were potentiated in the artery strips from 8-month-hypertensive dogs; however, the response to electrical stimulation of adrenergic nerves was not influenced. Contractions induced by the nerve stimulation were potentiated by a low concentration (2 X 10(-10) mol/l) of angiotensin (ANG) II; the potentiating effect was enhanced in 8-month-hypertensive dog arteries. 3H-overflow evoked by adrenergic nerve stimulation was increased by ANG II to a greater extent in superfused mesenteric artery strips obtained from hypertensive (8-month) dogs, previously soaked in 3H-norepinephrine. Angiotensin converting enzyme activity was markedly greater in 8-month-hypertensive dog mesenteric arteries than in normotensive dog arteries. It may be concluded that the hypertension is maintained by increased sensitivity of post-synaptic alpha 1-adrenoceptors and pre-synaptic ANG receptors and increased vascular ACE activity, possibly promoting the production of ANG II in the vascular wall.

UI MeSH Term Description Entries
D006978 Hypertension, Renovascular Hypertension due to RENAL ARTERY OBSTRUCTION or compression. Hypertension, Goldblatt,Goldblatt Syndrome,Goldblatt Hypertension,Renovascular Hypertension,Syndrome, Goldblatt
D007703 Peptidyl-Dipeptidase A A peptidyl-dipeptidase that catalyzes the release of a C-terminal dipeptide, oligopeptide-|-Xaa-Yaa, when Xaa is not Pro, and Yaa is neither Asp nor Glu. Thus, conversion of ANGIOTENSIN I to ANGIOTENSIN II, with increase in vasoconstrictor activity, but no action on angiotensin II. It is also able to inactivate BRADYKININ, a potent vasodilator; and has a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety. (From https://www.uniprot.org April 15, 2020). ACE1 Angiotensin-Converting Enzyme 1,ACE1 Protein,Angiotensin Converting Enzyme,Angiotensin Converting Enzyme 1,Antigens, CD143,CD143 Antigens,Dipeptidyl Carboxypeptidase I,Kininase II,Peptidase P,Angiotensin I-Converting Enzyme,Carboxycathepsin,Dipeptidyl Peptidase A,Kininase A,ACE1 Angiotensin Converting Enzyme 1,Angiotensin I Converting Enzyme,Carboxypeptidase I, Dipeptidyl,Peptidyl Dipeptidase A
D008297 Male Males
D008638 Mesenteric Arteries Arteries which arise from the abdominal aorta and distribute to most of the intestines. Arteries, Mesenteric,Artery, Mesenteric,Mesenteric Artery
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D012083 Renin A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19. Angiotensin-Forming Enzyme,Angiotensinogenase,Big Renin,Cryorenin,Inactive Renin,Pre-Prorenin,Preprorenin,Prorenin,Angiotensin Forming Enzyme,Pre Prorenin,Renin, Big,Renin, Inactive
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D000320 Adrenergic Fibers Nerve fibers liberating catecholamines at a synapse after an impulse. Sympathetic Fibers,Adrenergic Fiber,Fiber, Adrenergic,Fiber, Sympathetic,Fibers, Adrenergic,Fibers, Sympathetic,Sympathetic Fiber

Related Publications

N Toda, and M Miyazaki, and T Okamura
August 1990, Experientia,
N Toda, and M Miyazaki, and T Okamura
January 1983, Pflugers Archiv : European journal of physiology,
N Toda, and M Miyazaki, and T Okamura
January 1988, Clinical physiology and biochemistry,
N Toda, and M Miyazaki, and T Okamura
January 1985, The Japanese journal of physiology,
N Toda, and M Miyazaki, and T Okamura
January 1983, Clinical and experimental hypertension. Part A, Theory and practice,
N Toda, and M Miyazaki, and T Okamura
December 1984, The American journal of physiology,
N Toda, and M Miyazaki, and T Okamura
October 1989, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!