Interferon-induced inhibition of receptor-mediated endocytosis of colony-stimulating factor (CSF-1) by murine peritoneal exudate macrophages. 1986

B D Chen

Apart from its characteristic antiviral activity, interferon (IFN) also exerts a variety of biologic effects on macrophages. We have studied the effect of IFN on the expression of the colony-stimulating factor receptors (CSF-1 receptors) by murine peritoneal exudate macrophages (PEM). At 37 degrees C, murine IFN decreased the expression of the CSF-1 receptor activity in a time- and dose-dependent fashion by PEM from both endotoxin-sensitive (C3H/Sn) and endotoxin-resistant strains (C3H/HeJ) of mice. Scatchard analysis from the binding data suggests that the decreased expression of CSF-1 receptors is a result of decreased number of receptors rather than a decreased binding affinity. When IFN was incubated with anti-IFN before the addition to cultures, the effect was completely abolished indicating that this activity resides in the same molecules as IFN. The suppressed CSF-1 receptor activity on PEM by IFN appeared to be stable. Removal of added IFN never resulted in a full recovery of CSF-1 binding activity by PEM even after prolonged incubation (7 days). IFN also inhibited the receptor-mediated uptake and utilization of CSF-1 molecules by treated cells, which appeared to be a direct effect of the decreased number of CSF-1 receptors. Treatment of PEM with dexamethasone, prostaglandin, transferrin, insulin, or dibutyryl cAMP failed to suppress both the expression of CSF-1 receptors and CSF-1 utilization by PEM. These studies suggest that IFN may play a role in the regulation of both macrophage production and differentiation via the modulation of specific membrane receptors and inhibition of receptor-mediated CSF-1 endocytosis.

UI MeSH Term Description Entries
D007370 Interferon Type I Interferon secreted by leukocytes, fibroblasts, or lymphoblasts in response to viruses or interferon inducers other than mitogens, antigens, or allo-antigens. They include alpha- and beta-interferons (INTERFERON-ALPHA and INTERFERON-BETA). Interferons Type I,Type I Interferon,Type I Interferons,Interferon, Type I,Interferons, Type I
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D010529 Peritoneal Cavity The space enclosed by the peritoneum. It is divided into two portions, the greater sac and the lesser sac or omental bursa, which lies behind the STOMACH. The two sacs are connected by the foramen of Winslow, or epiploic foramen. Greater Sac,Lesser Sac,Omental Bursa,Bursa, Omental,Cavity, Peritoneal,Sac, Greater,Sac, Lesser
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D003115 Colony-Stimulating Factors Glycoproteins found in a subfraction of normal mammalian plasma and urine. They stimulate the proliferation of bone marrow cells in agar cultures and the formation of colonies of granulocytes and/or macrophages. The factors include INTERLEUKIN-3; (IL-3); GRANULOCYTE COLONY-STIMULATING FACTOR; (G-CSF); MACROPHAGE COLONY-STIMULATING FACTOR; (M-CSF); and GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR; (GM-CSF). MGI-1,Macrophage-Granulocyte Inducer,Colony Stimulating Factor,Colony-Stimulating Factor,MGI-1 Protein,Myeloid Cell-Growth Inducer,Protein Inducer MGI,Cell-Growth Inducer, Myeloid,Colony Stimulating Factors,Inducer, Macrophage-Granulocyte,Inducer, Myeloid Cell-Growth,MGI 1 Protein,MGI, Protein Inducer,Macrophage Granulocyte Inducer,Myeloid Cell Growth Inducer
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses

Related Publications

B D Chen
January 1986, Journal of cellular biochemistry,
B D Chen
April 1998, Sheng li xue bao : [Acta physiologica Sinica],
B D Chen
January 1990, The International journal of biochemistry,
Copied contents to your clipboard!