An anonymous single copy chromosome 21 probe, DS21D2, associated with a frequent RFLP. 1985

E A Devine-Gage, and C B Chan, and G E Houck, and W T Brown

UI MeSH Term Description Entries
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002904 Chromosomes, Human, 21-22 and Y The short, acrocentric human chromosomes, called group G in the human chromosome classification. This group consists of chromosome pairs 21 and 22 and the Y chromosome. Chromosomes G,Group G Chromosomes,Chromosomes, Human, 21 22,Chromosomes, Human, 21-22,Chromosome, Group G,Chromosomes, Group G,Group G Chromosome
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005787 Gene Frequency The proportion of one particular in the total of all ALLELES for one genetic locus in a breeding POPULATION. Allele Frequency,Genetic Equilibrium,Equilibrium, Genetic,Allele Frequencies,Frequencies, Allele,Frequencies, Gene,Frequency, Allele,Frequency, Gene,Gene Frequencies
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D015246 Deoxyribonuclease EcoRI One of the Type II site-specific deoxyribonucleases (EC 3.1.21.4). It recognizes and cleaves the sequence G/AATTC at the slash. EcoRI is from E coliRY13. Several isoschizomers have been identified. EC 3.1.21.-. DNA Restriction Enzyme EcoRI,Deoxyribonuclease SsoI,Endonuclease EcoRI,Eco RI,Eco-RI,EcoRI Endonuclease,Endodeoxyribonuclease ECoRI,Endodeoxyribonuclease HsaI,Endonuclease Eco159I,Endonuclease Eco82I,Endonuclease RsrI,Endonuclease SsoI,HsaI Endonuclease,Restriction Endonuclease RsrI

Related Publications

E A Devine-Gage, and C B Chan, and G E Houck, and W T Brown
February 1986, Nucleic acids research,
E A Devine-Gage, and C B Chan, and G E Houck, and W T Brown
March 1987, Nucleic acids research,
E A Devine-Gage, and C B Chan, and G E Houck, and W T Brown
January 1987, Nucleic acids research,
E A Devine-Gage, and C B Chan, and G E Houck, and W T Brown
September 1989, Nucleic acids research,
E A Devine-Gage, and C B Chan, and G E Houck, and W T Brown
August 1986, Nucleic acids research,
E A Devine-Gage, and C B Chan, and G E Houck, and W T Brown
October 1985, Nucleic acids research,
E A Devine-Gage, and C B Chan, and G E Houck, and W T Brown
November 1987, Nucleic acids research,
E A Devine-Gage, and C B Chan, and G E Houck, and W T Brown
August 1986, Nucleic acids research,
E A Devine-Gage, and C B Chan, and G E Houck, and W T Brown
April 1989, Nucleic acids research,
E A Devine-Gage, and C B Chan, and G E Houck, and W T Brown
February 1986, Nucleic acids research,
Copied contents to your clipboard!