A human histone H4 gene exhibits cell cycle-dependent changes in chromatin structure that correlate with its expression. 1985

S Chrysogelos, and D E Riley, and G Stein, and J Stein

By use of synchronized human HeLa S3 cells, a site sensitive to both DNase I and nuclease S1 was identified 50-150 base pairs upstream of the ATG codon of a cell cycle-dependent histone H4 gene. This site expanded to include a broad region of approximately equal to 300 base pairs sensitive to DNase I throughout S phase and then narrowed again to the original site after the completion of DNA replication. The level of nuclease S1 sensitivity was greatest during early S phase, when the gene is replicated and its transcription rate is maximal. The chromatin structure of the human beta-globin gene, which is not expressed in HeLa cells, was also analyzed throughout the cell cycle, and in no case was a sub-band seen as a result of DNase I or nuclease S1 digestion, nor were there any changes in nuclease sensitivity correlated with its replication. Thus the cell cycle-dependent chromatin alterations in this histone H4 gene appear to be due to the coupled replication and expression of this gene rather than simply its replication. These results suggest that histone genes, as compared with developmentally regulated genes, exhibit an "intermediate" level of regulation whereby the gene is never in a completely inactive conformation, but changes in chromatin structure occur as a function of the cell cycle and expression.

UI MeSH Term Description Entries
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D004720 Endonucleases Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-. Endonuclease
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015719 Single-Strand Specific DNA and RNA Endonucleases Enzymes that catalyze the endonucleolytic cleavage of single-stranded regions of DNA or RNA molecules while leaving the double-stranded regions intact. They are particularly useful in the laboratory for producing "blunt-ended" DNA molecules from DNA with single-stranded ends and for sensitive GENETIC TECHNIQUES such as NUCLEASE PROTECTION ASSAYS that involve the detection of single-stranded DNA and RNA. Single Strand Specific DNA and RNA Endonucleases

Related Publications

S Chrysogelos, and D E Riley, and G Stein, and J Stein
January 1989, The Journal of biological chemistry,
S Chrysogelos, and D E Riley, and G Stein, and J Stein
June 1987, Proceedings of the National Academy of Sciences of the United States of America,
S Chrysogelos, and D E Riley, and G Stein, and J Stein
September 1986, Biochemistry,
S Chrysogelos, and D E Riley, and G Stein, and J Stein
October 1979, Proceedings of the National Academy of Sciences of the United States of America,
S Chrysogelos, and D E Riley, and G Stein, and J Stein
September 1987, Journal of cellular physiology,
S Chrysogelos, and D E Riley, and G Stein, and J Stein
April 1986, Proceedings of the National Academy of Sciences of the United States of America,
S Chrysogelos, and D E Riley, and G Stein, and J Stein
March 1987, Molecular and cellular biology,
S Chrysogelos, and D E Riley, and G Stein, and J Stein
April 1996, Nucleic acids research,
S Chrysogelos, and D E Riley, and G Stein, and J Stein
October 1980, The Journal of cell biology,
S Chrysogelos, and D E Riley, and G Stein, and J Stein
February 1987, Nucleic acids research,
Copied contents to your clipboard!