970 nm low-level laser affects bone metabolism in orthodontic tooth movement. 2018

Li-Fang Hsu, and Meng-Huan Tsai, and Athena Hsuan-Yu Shih, and Yang-Cheng Chen, and Bei-En Chang, and Yi-Jane Chen, and Chung-Chen Jane Yao
Department of Orthodontics, Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taiwan; Division of Orthodontics, Department of Dentistry, National Taiwan University Hospital, Taiwan.

OBJECTIVE During orthodontic tooth movement (OTM), the speed of movement depends on the rate of bone turnover. In this study, we used a rat model to investigate the effect of 970 nm low-level laser therapy (LLLT) on OTM under different dose and frequency protocols. METHODS We first compared the OTM rates between the OTM only control and the OTM + LLLT group (1250 J/cm2) in Experiment 1 and showed that LLLT significantly increased OTM. In Experiment 2, we employed 3 different LLLT protocols: the low-dose group and the high-dose group receiving 5 doses of 750 J/cm2 and 15,000 J/cm2 of LLLT every 3 days, respectively, and the early high-dose group which received 5 daily doses at 15,000 J/cm2 at the beginning of the experiments. The OTM-only control group received no LLLT. Tooth movement rate was measured through sequential silicone impressions. MicroCT was also performed to evaluate bone de-mineralization rate. Bone histmorphometry was used to compare the bone turnover rate between LLLT group and control group. Finally, TRAP, Osteocalcin, and VEGF expression is evaluated by immunohistochemistry (IHC) in tissue sections. RESULTS When LLLT treatment was given every three days, both the 1250 J/cm2 and 15,000 J/cm2 groups showed significantly increased OTM compared to the control group. No significant difference was observed in the 750 J/cm2 group, or in the early irradiation group, when compared with controls, although 750 J/cm2 showed the same trend of accelerating OTM. The MicroCT result of rat maxilla demonstrated that LLLT increased bone remodeling and showed decreased bone mineral density and bone volume/total volume in the furcation areas of the maxillary first molars at the end of experiment. LLLT without OTM increased bone turnover as evidenced by fluorochrome incorporation. Immunohistochemistry analyses revealed high osteocalcin expression at later stages of OTM in the LLLT group, while VEGF expression was highly induced in the LLLT + OTM group at an early stage. CONCLUSIONS Our results suggest that the 970 nm LLLT increases the rate of OTM in a dose-sensitive and frequency-dependent manner. Further animal and human studies are needed to determine the optimal timing and dosage of LLLT for OTM acceleration.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008334 Mandible The largest and strongest bone of the FACE constituting the lower jaw. It supports the lower teeth. Mylohyoid Groove,Mylohyoid Ridge,Groove, Mylohyoid,Grooves, Mylohyoid,Mandibles,Mylohyoid Grooves,Mylohyoid Ridges,Ridge, Mylohyoid,Ridges, Mylohyoid
D008437 Maxilla One of a pair of irregularly shaped bones that form the upper jaw. A maxillary bone provides tooth sockets for the superior teeth, forms part of the ORBIT, and contains the MAXILLARY SINUS. Maxillae,Maxillary Bone,Bone, Maxillary,Bones, Maxillary,Maxillary Bones,Maxillas
D008963 Molar The most posterior teeth on either side of the jaw, totaling eight in the deciduous dentition (2 on each side, upper and lower), and usually 12 in the permanent dentition (three on each side, upper and lower). They are grinding teeth, having large crowns and broad chewing surfaces. (Jablonski, Dictionary of Dentistry, 1992, p821) Molars
D001861 Bone Regeneration Renewal or repair of lost bone tissue. It excludes BONY CALLUS formed after BONE FRACTURES but not yet replaced by hard bone. Osteoconduction,Bone Regenerations,Regeneration, Bone,Regenerations, Bone
D000071681 Tartrate-Resistant Acid Phosphatase One of several acid phosphatases in humans, other mammals, plants, and a few prokaryotes. The protein fold of tartrate-resistant acid phosphatase (TRAP) resembles that of the catalytic domain of plant purple acid phosphatase and other serine/threonine-protein phosphatases that also contain a metallophosphoesterase domain. One gene produces the various forms which include purple acid phosphatases from spleen and other tissues. Tartrate-resistant acid phosphatase is a biomarker for pathological states in which it is over-expressed. Such conditions include GAUCHER DISEASE; HODGKIN DISEASE; BONE RESORPTION; and NEOPLASM METASTASIS. AcPase V,Acid Phosphatase V,TRAP Type 5 AcPase,TRAcP,Tartrate-Resistant Acid Phosphatase Type 5,Type 5 Acid Phosphatase,Uteroferrin,Acid Phosphatase, Tartrate-Resistant,Phosphatase V, Acid,Phosphatase, Tartrate-Resistant Acid,Tartrate Resistant Acid Phosphatase,Tartrate Resistant Acid Phosphatase Type 5,V, AcPase,V, Acid Phosphatase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014087 Tooth Movement Techniques Orthodontic techniques used to correct the malposition of a tooth or teeth. Tooth Depression,Tooth Intrusion,Tooth Movement, Minor,Tooth Uprighting,Orthodontic Tooth Movement,Depression, Tooth,Depressions, Tooth,Intrusion, Tooth,Intrusions, Tooth,Minor Tooth Movement,Minor Tooth Movements,Movement Technique, Tooth,Movement Techniques, Tooth,Movement, Orthodontic Tooth,Movements, Orthodontic Tooth,Orthodontic Tooth Movements,Technique, Tooth Movement,Techniques, Tooth Movement,Tooth Depressions,Tooth Intrusions,Tooth Movement Technique,Tooth Movement, Orthodontic,Tooth Movements, Minor,Tooth Movements, Orthodontic,Tooth Uprightings,Uprighting, Tooth,Uprightings, Tooth
D015519 Bone Density The amount of mineral per square centimeter of BONE. This is the definition used in clinical practice. Actual bone density would be expressed in grams per milliliter. It is most frequently measured by X-RAY ABSORPTIOMETRY or TOMOGRAPHY, X RAY COMPUTED. Bone density is an important predictor for OSTEOPOROSIS. Bone Mineral Content,Bone Mineral Density,Bone Densities,Bone Mineral Contents,Bone Mineral Densities,Density, Bone,Density, Bone Mineral
D015675 Osteocalcin Vitamin K-dependent calcium-binding protein synthesized by OSTEOBLASTS and found primarily in BONES. Serum osteocalcin measurements provide a noninvasive specific marker of bone metabolism. The protein contains three residues of the amino acid gamma-carboxyglutamic acid (Gla), which, in the presence of CALCIUM, promotes binding to HYDROXYAPATITE and subsequent accumulation in BONE MATRIX. Bone Gla Protein,Calcium-Binding Protein, Vitamin K-Dependent,Gla Protein, Bone,Vitamin K-Dependent Bone Protein,4-Carboxyglutamic Protein, Bone,Bone gamma-Carboxyglutamic Acid Protein,4 Carboxyglutamic Protein, Bone,Bone 4-Carboxyglutamic Protein,Bone gamma Carboxyglutamic Acid Protein,Calcium Binding Protein, Vitamin K Dependent,Protein, Bone 4-Carboxyglutamic,Protein, Bone Gla,Vitamin K Dependent Bone Protein

Related Publications

Li-Fang Hsu, and Meng-Huan Tsai, and Athena Hsuan-Yu Shih, and Yang-Cheng Chen, and Bei-En Chang, and Yi-Jane Chen, and Chung-Chen Jane Yao
June 2021, BMC oral health,
Li-Fang Hsu, and Meng-Huan Tsai, and Athena Hsuan-Yu Shih, and Yang-Cheng Chen, and Bei-En Chang, and Yi-Jane Chen, and Chung-Chen Jane Yao
January 2013, Lasers in medical science,
Li-Fang Hsu, and Meng-Huan Tsai, and Athena Hsuan-Yu Shih, and Yang-Cheng Chen, and Bei-En Chang, and Yi-Jane Chen, and Chung-Chen Jane Yao
October 2015, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics,
Li-Fang Hsu, and Meng-Huan Tsai, and Athena Hsuan-Yu Shih, and Yang-Cheng Chen, and Bei-En Chang, and Yi-Jane Chen, and Chung-Chen Jane Yao
August 2014, Photomedicine and laser surgery,
Li-Fang Hsu, and Meng-Huan Tsai, and Athena Hsuan-Yu Shih, and Yang-Cheng Chen, and Bei-En Chang, and Yi-Jane Chen, and Chung-Chen Jane Yao
January 2018, Electronic physician,
Li-Fang Hsu, and Meng-Huan Tsai, and Athena Hsuan-Yu Shih, and Yang-Cheng Chen, and Bei-En Chang, and Yi-Jane Chen, and Chung-Chen Jane Yao
April 1979, Journal of periodontology,
Li-Fang Hsu, and Meng-Huan Tsai, and Athena Hsuan-Yu Shih, and Yang-Cheng Chen, and Bei-En Chang, and Yi-Jane Chen, and Chung-Chen Jane Yao
April 1979, Journal of periodontology,
Li-Fang Hsu, and Meng-Huan Tsai, and Athena Hsuan-Yu Shih, and Yang-Cheng Chen, and Bei-En Chang, and Yi-Jane Chen, and Chung-Chen Jane Yao
May 2013, Journal of dentistry (Tehran, Iran),
Li-Fang Hsu, and Meng-Huan Tsai, and Athena Hsuan-Yu Shih, and Yang-Cheng Chen, and Bei-En Chang, and Yi-Jane Chen, and Chung-Chen Jane Yao
April 2015, Journal of dentistry (Tehran, Iran),
Li-Fang Hsu, and Meng-Huan Tsai, and Athena Hsuan-Yu Shih, and Yang-Cheng Chen, and Bei-En Chang, and Yi-Jane Chen, and Chung-Chen Jane Yao
February 2006, Orthodontics & craniofacial research,
Copied contents to your clipboard!