Modulation of terminal excitability of mesolimbic dopaminergic neurons by D-amphetamine and haloperidol. 1985

G Mereu, and T C Westfall, and R Y Wang

Electrophysiological techniques were used to study the changes in the terminal excitability of mesolimbic DA and non-DA neurons following the infusion of D-amphetamine (D-AMP) and haloperidol (HAL) into the nucleus accumbens (NAc) of rats. The amount of current needed to evoke antidromic spikes by electrical stimulation of the NAc was used as an index of the excitability of axon terminals of these neurons. The excitability of DA neurons was decreased by D-AMP and increased by HAL. In addition, the effect produced by D-AMP was reversed by HAL. By contrast, these drugs either induced an opposite effect or were ineffective in inducing changes on the excitability of nerve terminals of mesolimbic non-DA neurons. Infusion of the vehicle or saline produced no effect. D-AMP and HAL were still effective in modulating the excitability of mesolimbic DA nerve terminals after the destruction of NAc neurons by ibotenic acid. The results suggest that the effects seen after D-AMP and HAL are mediated primarily by DA autoreceptors. It is likely that the increase in the current needed for evoking antidromic spikes after infusion of D-AMP into the terminal region is the consequence of DA autoreceptor-mediated hyperpolarization of terminal membranes. On the other hand, HAL could exert its actions by blocking autoreceptor-mediated hyperpolarization.

UI MeSH Term Description Entries
D007051 Ibotenic Acid A neurotoxic isoxazole (similar to KAINIC ACID and MUSCIMOL) found in AMANITA mushrooms. It causes motor depression, ataxia, and changes in mood, perceptions and feelings, and is a potent excitatory amino acid agonist. Acid, Ibotenic
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003913 Dextroamphetamine The d-form of AMPHETAMINE. It is a central nervous system stimulant and a sympathomimetic. It has also been used in the treatment of narcolepsy and of attention deficit disorders and hyperactivity in children. Dextroamphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulating release of monamines, and inhibiting monoamine oxidase. It is also a drug of abuse and a psychotomimetic. d-Amphetamine,Curban,Dexamfetamine,Dexamphetamine,Dexedrine,Dextro-Amphetamine Sulfate,DextroStat,Dextroamphetamine Sulfate,Oxydess,d-Amphetamine Sulfate,dextro-Amphetamine,Dextro Amphetamine Sulfate,Sulfate, Dextroamphetamine,d Amphetamine,d Amphetamine Sulfate,dextro Amphetamine
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D006220 Haloperidol A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279) Haldol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012686 Septal Nuclei Neural nuclei situated in the septal region. They have afferent and cholinergic efferent connections with a variety of FOREBRAIN and BRAIN STEM areas including the HIPPOCAMPAL FORMATION, the LATERAL HYPOTHALAMUS, the tegmentum, and the AMYGDALA. Included are the dorsal, lateral, medial, and triangular septal nuclei, septofimbrial nucleus, nucleus of diagonal band, nucleus of anterior commissure, and the nucleus of stria terminalis. Bed Nucleus of Stria Terminalis,Nucleus of Anterior Commissure,Nucleus of Diagonal Band,Nucleus of Stria Terminalis,Septofimbrial Nucleus,Dorsal Septal Nucleus,Lateral Septal Nucleus,Lateral Septum Nucleus,Medial Septal Nucleus,Medial Septum Nucleus,Nucleus Interstitialis Striae Terminalis,Nucleus Lateralis Septi,Nucleus Septalis Lateralis,Nucleus Septi Lateralis,Nucleus Striae Terminalis,Nucleus Triangularis Septi,Nucleus of the Stria Terminalis,Septal Nuclear Complex,Triangular Septal Nucleus,Anterior Commissure Nucleus,Complex, Septal Nuclear,Complices, Septal Nuclear,Diagonal Band Nucleus,Laterali, Nucleus Septalis,Laterali, Nucleus Septi,Lateralis Septi, Nucleus,Lateralis Septus, Nucleus,Lateralis, Nucleus Septalis,Lateralis, Nucleus Septi,Nuclear Complex, Septal,Nuclear Complices, Septal,Nuclei, Septal,Nucleus Lateralis Septus,Nucleus Septalis Laterali,Nucleus Septi Laterali,Nucleus Striae Terminali,Nucleus Triangularis Septus,Nucleus, Dorsal Septal,Nucleus, Lateral Septal,Nucleus, Lateral Septum,Nucleus, Medial Septal,Nucleus, Medial Septum,Nucleus, Septofimbrial,Nucleus, Triangular Septal,Septal Nuclear Complices,Septal Nucleus, Dorsal,Septal Nucleus, Lateral,Septal Nucleus, Medial,Septal Nucleus, Triangular,Septalis Laterali, Nucleus,Septalis Lateralis, Nucleus,Septi Laterali, Nucleus,Septi Lateralis, Nucleus,Septi, Nucleus Lateralis,Septi, Nucleus Triangularis,Septum Nucleus, Lateral,Septum Nucleus, Medial,Septus, Nucleus Lateralis,Septus, Nucleus Triangularis,Stria Terminalis Nucleus,Striae Terminali, Nucleus,Striae Terminalis, Nucleus,Terminali, Nucleus Striae,Terminalis, Nucleus Striae,Triangularis Septi, Nucleus,Triangularis Septus, Nucleus

Related Publications

G Mereu, and T C Westfall, and R Y Wang
September 1981, Brain research,
G Mereu, and T C Westfall, and R Y Wang
January 1989, Neuropharmacology,
G Mereu, and T C Westfall, and R Y Wang
February 1975, European journal of pharmacology,
G Mereu, and T C Westfall, and R Y Wang
October 1978, Life sciences,
G Mereu, and T C Westfall, and R Y Wang
January 1988, Neuropsychobiology,
G Mereu, and T C Westfall, and R Y Wang
January 1988, Annals of the New York Academy of Sciences,
G Mereu, and T C Westfall, and R Y Wang
January 1991, Neuroscience,
G Mereu, and T C Westfall, and R Y Wang
March 1978, Neuroscience letters,
G Mereu, and T C Westfall, and R Y Wang
January 1994, Neuroscience letters,
Copied contents to your clipboard!