Tiazofurin metabolism in human lymphoblastoid cells: evidence for phosphorylation by adenosine kinase and 5'-nucleotidase. 1986

A Fridland, and M C Connelly, and T J Robbins

The exact route of metabolism of tiazofurin, a novel nucleoside with antitumor activity, is controversial. Using human cell lines severely deficient in salvage nucleotide enzymes, we were able to identify the route of activation in tiazofurin metabolism. With loss of adenosine kinase activity by mutation in two lymphoblastoid cell lines, CCRF-CEM and WI-L2, the growth sensitivity to tiazofurin decreased by 6- and 3-fold, respectively. In contrast, the mutant lines were about 3000- to 1500- and 16- to 4-fold more resistant to the structurally similar tiazofurin analogues pyrazofurin and ribavirin, respectively. Other mutants with defective deoxycytidine or uridine kinase activity showed normal sensitivity to all three analogues. Both cell lines with defective adenosine kinase activity accumulated about 50% wild-type levels of tiazofurin-5'-monophosphate and thiazole-4-carboxamide adenine dinucleotide analogue of tiazofurin at cytotoxic concentrations of the drug. Extracts of wild-type lymphoblasts catalyzed the phosphorylation of tiazofurin in the presence of adenosine 5'-triphosphate and Mg2+. Loss of adenosine kinase activity in the mutant extract eliminated this phosphorylating activity for tiazofurin consistent with the notion that adenosine kinase catalyzes phosphorylation of tiazofurin. However, an enzyme activity that catalyzed the phosphorylation of tiazofurin in the presence of inosine-5'-monophosphate as donor and Mg2+ was detected in the extracts of both wild-type cells and adenosine kinase-deficient mutants. The monophosphate donor specificity, divalent metal, high salt requirement, and nucleoside acceptor specificity of this enzyme activity paralleled that of a 5'-nucleotidase (EC 3.1.3.5) which catalyzes inosine phosphorylation. In addition, tiazofurin phosphorylation was competitively inhibited by inosine and the apparent Ki value was similar to the apparent Km value for inosine phosphorylation. These results indicate that two enzymes, adenosine kinase and a cytoplasmic 5'-nucleotidase, are functionally important anabolizing enzymes for tiazofurin in human cells.

UI MeSH Term Description Entries
D007291 Inosine Monophosphate Inosine 5'-Monophosphate. A purine nucleotide which has hypoxanthine as the base and one phosphate group esterified to the sugar moiety. IMP,Inosinic Acid,Ribosylhypoxanthine Monophosphate,Inosinic Acids,Sodium Inosinate,Acid, Inosinic,Acids, Inosinic,Inosinate, Sodium,Monophosphate, Inosine,Monophosphate, Ribosylhypoxanthine
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D009708 Nucleotidases A class of enzymes that catalyze the conversion of a nucleotide and water to a nucleoside and orthophosphate. EC 3.1.3.-.
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D011720 Pyrazoles Azoles of two nitrogens at the 1,2 positions, next to each other, in contrast with IMIDAZOLES in which they are at the 1,3 positions.
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000248 Adenosine Kinase An enzyme that catalyzes the formation of ADP plus AMP from adenosine plus ATP. It can serve as a salvage mechanism for returning adenosine to nucleic acids. EC 2.7.1.20. Kinase, Adenosine

Related Publications

A Fridland, and M C Connelly, and T J Robbins
January 1984, Advances in experimental medicine and biology,
A Fridland, and M C Connelly, and T J Robbins
January 1990, Journal of inherited metabolic disease,
A Fridland, and M C Connelly, and T J Robbins
January 1984, Advances in experimental medicine and biology,
A Fridland, and M C Connelly, and T J Robbins
December 1980, FEBS letters,
A Fridland, and M C Connelly, and T J Robbins
August 1989, Molecular pharmacology,
A Fridland, and M C Connelly, and T J Robbins
January 1973, Advances in experimental medicine and biology,
Copied contents to your clipboard!