5-HT1A receptor-mediated activation of neuroendocrine responses and multiple protein kinase pathways in the peripubertal rat hypothalamus. 2018

Maureen L Petrunich-Rutherford, and Francisca Garcia, and George Battaglia
Neuroscience Institute, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, United States.

Increasing evidence suggests that multiple factors can produce effects on the immature brain that are distinct and more long-lasting than those produced in adults. The hypothalamic paraventricular nucleus (PVN) is a region integral to the hypothalamic-pituitary-adrenal axis and is affected by anxiety, depression, and drugs used to treat these disorders, yet receptor signaling mechanisms operative in hypothalamus prior to maturation remain to be elucidated. In peripubertal male rats, systemic injection of the selective serotonin 1A (5-HT1A) receptor agonist (+)8-OH-DPAT (0.2 mg/kg) markedly elevated plasma levels of oxytocin and adrenocorticotropic hormone (ACTH) at 5 and 15 min post-injection. The 5-HT1A receptor selectivity was demonstrated by the ability of the 5-HT1A receptor selective antagonist WAY100635 to completely block both oxytocin and ACTH responses at 5 min, with some recovery of the ACTH response at 15 min. At 15 min post-injection, (+)8-OH-DPAT also increased levels of phosphorylated extracellular signal-regulated kinase (pERK) and phosphorylated protein kinase B (pAkt) in the PVN. As previously observed in adults, (+)8-OH-DPAT reduced levels of pERK in hippocampus. WAY100635 also completely blocked (+)8-OH-DPAT-mediated elevations in hypothalamic pERK and pAkt and the reductions in hippocampal pERK, demonstrating 5-HT1A receptor selectivity of both kinase responses. This study provides the first demonstration of functional 5-HT1A receptor-mediated ERK and Akt signaling pathways in the immature hypothalamus, activated by a dose of (+)8-OH-DPAT that concomitantly stimulates neuroendocrine responses. This information is fundamental to identifying potential signaling pathways targeted by biased agonists in the development of safe and effective treatment strategies in children and adolescents.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008297 Male Males
D009490 Neurosecretory Systems A system of NEURONS that has the specialized function to produce and secrete HORMONES, and that constitutes, in whole or in part, an ENDOCRINE SYSTEM or organ. Neuroendocrine System,Neuroendocrine Systems,Neurosecretory System,System, Neuroendocrine,System, Neurosecretory,Systems, Neuroendocrine,Systems, Neurosecretory
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012702 Serotonin Antagonists Drugs that bind to but do not activate serotonin receptors, thereby blocking the actions of serotonin or SEROTONIN RECEPTOR AGONISTS. 5-HT Antagonist,5-HT Antagonists,5-Hydroxytryptamine Antagonist,5-Hydroxytryptamine Antagonists,Antiserotonergic Agent,Antiserotonergic Agents,Serotonin Antagonist,Serotonin Blockader,Serotonin Blockaders,Serotonin Receptor Antagonist,Serotonin Receptor Blocker,Antagonists, 5-HT,Antagonists, 5-Hydroxytryptamine,Antagonists, Serotonin,Serotonin Receptor Antagonists,Serotonin Receptor Blockers,5 HT Antagonist,5 HT Antagonists,5 Hydroxytryptamine Antagonist,5 Hydroxytryptamine Antagonists,Agent, Antiserotonergic,Agents, Antiserotonergic,Antagonist, 5-HT,Antagonist, 5-Hydroxytryptamine,Antagonist, Serotonin,Antagonist, Serotonin Receptor,Antagonists, 5 HT,Antagonists, 5 Hydroxytryptamine,Antagonists, Serotonin Receptor,Blockader, Serotonin,Blockaders, Serotonin,Blocker, Serotonin Receptor,Blockers, Serotonin Receptor,Receptor Antagonist, Serotonin,Receptor Antagonists, Serotonin,Receptor Blocker, Serotonin,Receptor Blockers, Serotonin
D012741 Sexual Maturation Achievement of full sexual capacity in animals and in humans. Sex Maturation,Maturation, Sex,Maturation, Sexual
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Maureen L Petrunich-Rutherford, and Francisca Garcia, and George Battaglia
October 2002, European journal of pharmacology,
Maureen L Petrunich-Rutherford, and Francisca Garcia, and George Battaglia
April 1997, European journal of pharmacology,
Maureen L Petrunich-Rutherford, and Francisca Garcia, and George Battaglia
July 1995, Neuroreport,
Maureen L Petrunich-Rutherford, and Francisca Garcia, and George Battaglia
January 2005, International journal of immunopathology and pharmacology,
Maureen L Petrunich-Rutherford, and Francisca Garcia, and George Battaglia
January 2005, Naunyn-Schmiedeberg's archives of pharmacology,
Maureen L Petrunich-Rutherford, and Francisca Garcia, and George Battaglia
October 2005, European journal of pharmacology,
Maureen L Petrunich-Rutherford, and Francisca Garcia, and George Battaglia
February 1995, European journal of pharmacology,
Maureen L Petrunich-Rutherford, and Francisca Garcia, and George Battaglia
May 2007, Regulatory peptides,
Maureen L Petrunich-Rutherford, and Francisca Garcia, and George Battaglia
December 1994, The Journal of pharmacology and experimental therapeutics,
Maureen L Petrunich-Rutherford, and Francisca Garcia, and George Battaglia
August 2001, Neuropharmacology,
Copied contents to your clipboard!