Production of live young with cryopreserved sperm from the endangered livebearing fish Redtail Splitfin (Xenotoca eiseni, Rutter, 1896). 2018

Yue Liu, and Harry J Grier, and Terrence R Tiersch
Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.

Previous studies of sperm cryopreservation of livebearing fish have been limited to two genera within the family Poeciliidae. The goal of the present study was to investigate the feasibility to produce live young of livebearing goodeids (family Goodeidae) with cryopreserved sperm, using aquarium-trade populations of the endangered species Redtail Splitfin (Xenotoca eiseni, Rutter, 1896). Reproductive condition of females was evaluated by histological categorization of ovarian development. A total of 117 females were inseminated with cryopreserved sperm, 81 were inseminated with fresh sperm, 27 were mixed with males for natural breeding, and 30 were maintained without males or insemination. Histological images of 34 mature females indicated 68% of ovaries had primary- or secondary-growth oocytes, and 32% had ovulated eggs. Ovarian development had no significant relationship (P =  0.508) with body wet weight, but had a relationship (P <  0.001) with ovary weight and gonadosomatic index. Sperm cells were observed within ovaries that were fixed at 12 h after insemination with fresh sperm. A total of 29 live young were produced from two females inseminated with thawed sperm (8% post-thaw motility with HBSS300 as extender, 20 min incubation in 15% DMSO, cooling rate at 10 °C/min, and thawing at 40 °C for 7 s), 12 were produced from two females with fresh sperm (1%-20% motility), 41 were produced from five naturally spawned females, and no live young were produced from the female-only group. This study provides a foundation for establishment of germplasm repositories for endangered goodeids to assist conservation programs.

UI MeSH Term Description Entries
D007315 Insemination, Artificial Artificial introduction of SEMEN or SPERMATOZOA into the VAGINA to facilitate FERTILIZATION. Artificial Insemination,Eutelegenesis,Artificial Inseminations,Eutelegeneses,Inseminations, Artificial
D008297 Male Males
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D003451 Cryoprotective Agents Substances that provide protection against the harmful effects of freezing temperatures. Cryoprotective Agent,Cryoprotective Effect,Cryoprotective Effects,Agent, Cryoprotective,Agents, Cryoprotective,Effect, Cryoprotective,Effects, Cryoprotective
D005260 Female Females
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012662 Semen Preservation The process by which semen is kept viable outside of the organism from which it was derived (i.e., kept from decay by means of a chemical agent, cooling, or a fluid substitute that mimics the natural state within the organism). Frozen Semen,Sperm Preservation,Preservation, Semen,Preservation, Sperm,Semen, Frozen
D013081 Sperm Motility Movement characteristics of SPERMATOZOA in a fresh specimen. It is measured as the percentage of sperms that are moving, and as the percentage of sperms with productive flagellar motion such as rapid, linear, and forward progression. Motilities, Sperm,Motility, Sperm,Sperm Motilities
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms

Related Publications

Yue Liu, and Harry J Grier, and Terrence R Tiersch
March 2013, Animal cognition,
Yue Liu, and Harry J Grier, and Terrence R Tiersch
December 2018, Biology of reproduction,
Yue Liu, and Harry J Grier, and Terrence R Tiersch
December 1997, Animal behaviour,
Yue Liu, and Harry J Grier, and Terrence R Tiersch
January 2021, Anatomia, histologia, embryologia,
Yue Liu, and Harry J Grier, and Terrence R Tiersch
April 2018, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology,
Yue Liu, and Harry J Grier, and Terrence R Tiersch
January 1987, Meditsinskaia parazitologiia i parazitarnye bolezni,
Yue Liu, and Harry J Grier, and Terrence R Tiersch
March 2015, Animal cognition,
Yue Liu, and Harry J Grier, and Terrence R Tiersch
February 2010, Behavioural brain research,
Yue Liu, and Harry J Grier, and Terrence R Tiersch
January 2016, Animal cognition,
Copied contents to your clipboard!