Lysosomal Cathepsin Protease Gene Expression Profiles in the Human Brain During Normal Development. 2018

Amy Hsu, and Sonia Podvin, and Vivian Hook
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr. MC0719, La Jolla, CA, 92093-0719, USA.

Cathepsin protease genes are necessary for protein homeostasis in normal brain development and function. The diversity of the 15 cathepsin protease activities raises the question of what are the human brain expression profiles of the cathepsin genes during development from prenatal and infancy to childhood, adolescence, and young adult stages. This study, therefore, evaluated the cathepsin gene expression profiles in 16 human brain regions during development by quantitative RNA-sequencing data obtained from the Allen Brain Atlas resource. Total expression of all cathepsin genes was the lowest at the early prenatal stage which became increased at the infancy stage. During infancy to young adult phases, total gene expression was similar. Interestingly, the rank ordering of gene expression among the cathepsins was similar throughout the brain at the age periods examined, showing (a) high expression of cathepsins B, D, and F; (b) moderate expression of cathepsins A, L, and Z; (c) low expression of cathepsins C, H, K, O, S, and V; and (d) very low expression of cathepsins E, G, and W. Results show that the human brain utilizes well-defined, balanced patterns of cathepsin gene expression throughout the different stages of human brain development. Knowledge gained by this study of the gene expression profiles of lysosomal cathepsin proteases among human brain regions during normal development is important for advancing future investigations of how these cathepsins are dysregulated in lysosomal-related brain disorders that affect infants, children, adolescents, and young adults.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D008297 Male Males
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002403 Cathepsins A group of lysosomal proteinases or endopeptidases found in aqueous extracts of a variety of animal tissues. They function optimally within an acidic pH range. The cathepsins occur as a variety of enzyme subtypes including SERINE PROTEASES; ASPARTIC PROTEINASES; and CYSTEINE PROTEASES. Cathepsin
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Amy Hsu, and Sonia Podvin, and Vivian Hook
January 1990, Acta histochemica. Supplementband,
Amy Hsu, and Sonia Podvin, and Vivian Hook
October 2003, European journal of biochemistry,
Amy Hsu, and Sonia Podvin, and Vivian Hook
January 2019, Cell death discovery,
Amy Hsu, and Sonia Podvin, and Vivian Hook
February 2007, Physiological genomics,
Amy Hsu, and Sonia Podvin, and Vivian Hook
July 2017, Molecular neurodegeneration,
Amy Hsu, and Sonia Podvin, and Vivian Hook
July 1999, Biochimica et biophysica acta,
Amy Hsu, and Sonia Podvin, and Vivian Hook
June 2016, Scientific reports,
Amy Hsu, and Sonia Podvin, and Vivian Hook
June 1998, Biochemistry,
Copied contents to your clipboard!