Triple stimuli-responsive keratin nanoparticles as carriers for drug and potential nitric oxide release. 2018

Yanmei Li, and Jiantao Lin, and Xuelian Zhi, and Pengfei Li, and Xuefeng Jiang, and Jiang Yuan
Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.

Development of pH/GSH/enzyme triple stimuli-responsive drug delivery system is promising for tumor therapy due to more acidic, higher glutathione (GSH) level, and overexpressed trypsin under tumor microenvironment. Herein, keratin/doxorubicin (DOX) complex nanoparticles (KDNPs) were for the first time prepared using a drug-induced ionic gelation technique without cross-linker, organic solvent and surfactant. The resultant KDNPs had high drug loading efficacy and performed considerably stable in aqueous solution. Drug delivery curves showed that KDNPs exhibited triple-responsive characters (pH, GSH, and enzyme). Under tumor microenvironments (acid and high GSH level), KDNPs performed surface charge conversion of negative-to-positive and enhanced permeation retention effect (EPR), which both benefited the drug accumulation. Furthermore, the overexpressed trypsin would cleave the peptide bonds within KDNPs and enhance the DOX release. KDNPs were demonstrated to be internalized by A549 cells through endocytosis by cellular uptake assay. Cytotoxicity assay indicated that KDNPs could inhibit the proliferation of tumor cells efficiently. In vivo cytotoxicity and hemolysis tests suggested that KDNPs exhibited excellent biocompatibility as well as good blood compatibility. In vivo antitumor efficacy demonstrated that KDNPs had a strong antitumor effect similar to that of free DOX, but with nearly no side effects. Intriguingly, KDNPs were able to catalyze endogenous NO donor in blood to release NO in tumor tissue, resulting in the prolonged blood circulation time and improved therapeutic activity of drug. In conclusion, keratin-based drug carriers are potential for cancer therapy in clinical medicine.

UI MeSH Term Description Entries
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D004337 Drug Carriers Forms to which substances are incorporated to improve the delivery and the effectiveness of drugs. Drug carriers are used in drug-delivery systems such as the controlled-release technology to prolong in vivo drug actions, decrease drug metabolism, and reduce drug toxicity. Carriers are also used in designs to increase the effectiveness of drug delivery to the target sites of pharmacological actions. Liposomes, albumin microspheres, soluble synthetic polymers, DNA complexes, protein-drug conjugates, and carrier erythrocytes among others have been employed as biodegradable drug carriers. Drug Carrier
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006461 Hemolysis The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity. Haemolysis,Extravascular Hemolysis,Intravascular Hemolysis,Extravascular Hemolyses,Haemolyses,Hemolyses, Extravascular,Hemolyses, Intravascular,Hemolysis, Extravascular,Hemolysis, Intravascular,Intravascular Hemolyses

Related Publications

Yanmei Li, and Jiantao Lin, and Xuelian Zhi, and Pengfei Li, and Xuefeng Jiang, and Jiang Yuan
January 2019, Current medicinal chemistry,
Yanmei Li, and Jiantao Lin, and Xuelian Zhi, and Pengfei Li, and Xuefeng Jiang, and Jiang Yuan
December 2020, Journal of biomaterials science. Polymer edition,
Yanmei Li, and Jiantao Lin, and Xuelian Zhi, and Pengfei Li, and Xuefeng Jiang, and Jiang Yuan
July 2017, Colloids and surfaces. B, Biointerfaces,
Yanmei Li, and Jiantao Lin, and Xuelian Zhi, and Pengfei Li, and Xuefeng Jiang, and Jiang Yuan
June 2021, Journal of biomaterials science. Polymer edition,
Yanmei Li, and Jiantao Lin, and Xuelian Zhi, and Pengfei Li, and Xuefeng Jiang, and Jiang Yuan
October 2020, Journal of biomaterials science. Polymer edition,
Yanmei Li, and Jiantao Lin, and Xuelian Zhi, and Pengfei Li, and Xuefeng Jiang, and Jiang Yuan
January 2018, Current medicinal chemistry,
Yanmei Li, and Jiantao Lin, and Xuelian Zhi, and Pengfei Li, and Xuefeng Jiang, and Jiang Yuan
October 2012, Langmuir : the ACS journal of surfaces and colloids,
Yanmei Li, and Jiantao Lin, and Xuelian Zhi, and Pengfei Li, and Xuefeng Jiang, and Jiang Yuan
August 2018, ACS applied materials & interfaces,
Yanmei Li, and Jiantao Lin, and Xuelian Zhi, and Pengfei Li, and Xuefeng Jiang, and Jiang Yuan
February 2018, Lab on a chip,
Yanmei Li, and Jiantao Lin, and Xuelian Zhi, and Pengfei Li, and Xuefeng Jiang, and Jiang Yuan
January 2022, Frontiers in bioengineering and biotechnology,
Copied contents to your clipboard!