Effects and Mechanism of Nano-Copper Exposure on Hepatic Cytochrome P450 Enzymes in Rats. 2018

Huaqiao Tang, and Min Xu, and Fei Shi, and Gang Ye, and Cheng Lv, and Jie Luo, and Ling Zhao, and Yinglun Li
Department of Pharmacy, School of Animal Medicine, Sichuan Agricultural University, Chengdu 611130, China. turtletang@163.com.

Although nano-copper is currently used extensively, the adverse effects on liver cytochrome P450 (CYP450) enzymes after oral exposure are not clear. In this study, we determined the effects and mechanisms of action of nano- and micro-copper on the expression and activity of CYP450 enzymes in rat liver. Rats were orally exposed to micro-copper (400 mg/kg), Cu ion (100 mg/kg), or nano-copper (100, 200 and 400 mg/kg) daily for seven consecutive days. Histopathological, inflammatory and oxidative stress were measured in the livers of all rats. The mRNA levels and activity of CYP450 enzymes, as well as the mRNA levels of select nuclear receptors, were determined. Exposure to nano-copper (400 mg/kg) induced significant oxidative stress and inflammation relative to the controls, indicated by increased levels of interleukin (IL)-2, IL-6, interferon (IFN)-γ, macrophage inflammatory protein (MIP-1), total antioxidant capacity (T-AOC), malondialdehyde (MDA), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) after exposure. The levels of mRNA expression of pregnane X receptor (PXR), constitutive androstane receptor (CAR) and aryl hydrocarbon receptor (AHR) were significantly decreased in 400 mg/kg nano-copper treated rats. Nano-copper activated the expression of the NF-kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT)3 signaling pathways. Nano-copper decreased the mRNA expression and activity of CYP 1A2, 2C11, 2D6, 2E1 and 3A4 in a dose-dependent manner. The adverse effects of micro-copper are less severe than those of nano-copper on the CYP450 enzymes of rats after oral exposure. Ingestion of large amounts of nano-copper in animals severely affects the drug metabolism of the liver by inhibiting the expression of various CYP450 enzymes, which increases the risk of drug-drug interactions in animals.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D011987 Receptors, Steroid Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes. Corticosteroid Receptors,Receptors, Corticosteroid,Steroid Receptors,Corticosteroid Receptor,Receptors, Steroids,Steroid Receptor,Receptor, Corticosteroid,Receptor, Steroid,Steroids Receptors
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D000077297 Pregnane X Receptor Steroid receptor that binds and is activated by variety of endogenous compounds and XENOBIOTICS. It binds the response element in promoters of genes that encode CYTOCHROME P450 3A4 and ATP BINDING CASSETTE TRANSPORTER, SUBFAMILY B, MEMBER 1 proteins, and also activates the transcription of multiple genes involved in the metabolism and secretion of potentially harmful xenobiotics, drugs, and endogenous compounds. It is activated by the antibiotic RIFAMPICIN and various plant metabolites, such as hyperforin, guggulipid, colupulone, and ISOFLAVONES. NR1I2,Nuclear Receptor Subfamily 1, Group I, Member 2,SXR Receptor,Steroid X Receptor,Steroid and Xenobiotic Receptor

Related Publications

Huaqiao Tang, and Min Xu, and Fei Shi, and Gang Ye, and Cheng Lv, and Jie Luo, and Ling Zhao, and Yinglun Li
February 2002, Drug and chemical toxicology,
Huaqiao Tang, and Min Xu, and Fei Shi, and Gang Ye, and Cheng Lv, and Jie Luo, and Ling Zhao, and Yinglun Li
January 2014, Journal of ethnopharmacology,
Huaqiao Tang, and Min Xu, and Fei Shi, and Gang Ye, and Cheng Lv, and Jie Luo, and Ling Zhao, and Yinglun Li
April 2014, Die Pharmazie,
Huaqiao Tang, and Min Xu, and Fei Shi, and Gang Ye, and Cheng Lv, and Jie Luo, and Ling Zhao, and Yinglun Li
November 2022, Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica,
Huaqiao Tang, and Min Xu, and Fei Shi, and Gang Ye, and Cheng Lv, and Jie Luo, and Ling Zhao, and Yinglun Li
June 2003, Drug metabolism and disposition: the biological fate of chemicals,
Huaqiao Tang, and Min Xu, and Fei Shi, and Gang Ye, and Cheng Lv, and Jie Luo, and Ling Zhao, and Yinglun Li
November 2021, Heliyon,
Huaqiao Tang, and Min Xu, and Fei Shi, and Gang Ye, and Cheng Lv, and Jie Luo, and Ling Zhao, and Yinglun Li
May 1998, Drug and chemical toxicology,
Huaqiao Tang, and Min Xu, and Fei Shi, and Gang Ye, and Cheng Lv, and Jie Luo, and Ling Zhao, and Yinglun Li
April 2010, The Journal of veterinary medical science,
Huaqiao Tang, and Min Xu, and Fei Shi, and Gang Ye, and Cheng Lv, and Jie Luo, and Ling Zhao, and Yinglun Li
May 2020, The Journal of veterinary medical science,
Huaqiao Tang, and Min Xu, and Fei Shi, and Gang Ye, and Cheng Lv, and Jie Luo, and Ling Zhao, and Yinglun Li
June 2012, Journal of ethnopharmacology,
Copied contents to your clipboard!