Which wavelength is optimal for transcranial low-level laser stimulation? 2019

Pengbo Wang, and Ting Li
University of Electronic Science and Technology of China, Chengdu, China.

One of the challenges in transcranial low-level laser therapy (LLLT) is to optimally choose illumination parameters, such as wavelength. However, there is sparse study on the wavelengths comparison especially on human transcranial LLLT. Here, we employed Monte Carlo modeling and visible human phantom to compute the penetrated photon fluence distribution within cerebral cortex. By comparing the fluence distribution, penetration depth and the intensity of laser-tissue-interaction within brain among all candidate wavelengths, we found that 660, 810 nm performed much better than 980, 1064 nm with much stronger, deeper and wider photon penetration into cerebral tissue; 660 nm was shown to be the best and slightly better than 810 nm. Our computational finding was in a surprising accordance with previous LLLT-neurobehavioral studies on mice. This study not only offered quantitative comparison among wavelengths in the effect of LLLT light penetration effectiveness but also anticipated a delightful possibility of online, precise and visible optimization of LLLT illumination parameters.

UI MeSH Term Description Entries
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012886 Skull The SKELETON of the HEAD including the FACIAL BONES and the bones enclosing the BRAIN. Calvaria,Cranium,Calvarium,Skulls
D055620 Optical Phenomena LIGHT, its processes and properties, and the characteristics of materials interacting with it. Optical Concepts,Optical Processes,Optical Phenomenon,Optical Process,Concept, Optical,Concepts, Optical,Optical Concept,Phenomena, Optical,Phenomenon, Optical,Process, Optical,Processes, Optical
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging
D028022 Low-Level Light Therapy Treatment using irradiation with light of low power intensity so that the effects are a response to the light and not due to heat. A variety of light sources, especially low-power lasers are used. LLLT,Laser Biostimulation,Laser Irradiation, Low-Power,Laser Therapy, Low-Level,Photobiomodulation,Laser Phototherapy,Laser Therapy, Low-Power,Low-Level Laser Therapy,Low-Power Laser Irradiation,Low-Power Laser Therapy,Photobiomodulation Therapy,Biostimulation, Laser,Irradiation, Low-Power Laser,Laser Irradiation, Low Power,Laser Therapies, Low-Level,Laser Therapies, Low-Power,Laser Therapy, Low Level,Laser Therapy, Low Power,Light Therapies, Low-Level,Light Therapy, Low-Level,Low Level Laser Therapy,Low Level Light Therapy,Low Power Laser Irradiation,Low Power Laser Therapy,Low-Level Laser Therapies,Low-Level Light Therapies,Low-Power Laser Therapies,Photobiomodulation Therapies,Photobiomodulations,Phototherapy, Laser,Therapies, Low-Level Light,Therapies, Photobiomodulation,Therapy, Low-Level Light,Therapy, Photobiomodulation

Related Publications

Pengbo Wang, and Ting Li
March 2011, The Journal of physiology,
Pengbo Wang, and Ting Li
December 2016, Photomedicine and laser surgery,
Pengbo Wang, and Ting Li
November 2012, Journal of biophotonics,
Pengbo Wang, and Ting Li
January 2013, PloS one,
Pengbo Wang, and Ting Li
March 2017, Journal of photochemistry and photobiology. B, Biology,
Pengbo Wang, and Ting Li
November 2023, Journal of endourology,
Pengbo Wang, and Ting Li
August 2006, Photomedicine and laser surgery,
Pengbo Wang, and Ting Li
December 2005, Photomedicine and laser surgery,
Pengbo Wang, and Ting Li
January 2012, Evidence-based complementary and alternative medicine : eCAM,
Pengbo Wang, and Ting Li
July 2022, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Copied contents to your clipboard!