One of two copper atoms is not necessary for the cytochrome c oxidase activity of Pseudomonas AM 1 cytochrome aa3. 1985

Y Fukumori, and K Nakayama, and T Yamanaka

From Pseudomonas AM 1 grown in a medium deficient in Cu, aa3-type cytochrome c oxidase was purified which contained 2 molecules of haem a and one atom of Cu per molecule. The enzyme showed absorption peaks at 428 and 595 nm in the oxidized form and at 442 and 604 nm in the reduced form, and its CO complex showed peaks at 432 and 602 nm. The enzyme in the oxidized state showed an obscure absorption peak around 800 nm instead of a peak at 820 nm. One mol of the enzyme oxidized maximally 76, 75, and 98 mol of the ferrocytochromes c of Candida krusei, horse and Pseudomonas AM 1 per sec, respectively. These reactions were 50% inhibited by 7 microM KCN. The product of reduction of O2 catalyzed by the enzyme was concluded to be H2O on the basis of the ratio of ferrocytochrome c oxidized to O2 consumed.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D002175 Candida A genus of yeast-like mitosporic Saccharomycetales fungi characterized by producing yeast cells, mycelia, pseudomycelia, and blastophores. It is commonly part of the normal flora of the skin, mouth, intestinal tract, and vagina, but can cause a variety of infections, including CANDIDIASIS; ONYCHOMYCOSIS; VULVOVAGINAL CANDIDIASIS; and CANDIDIASIS, ORAL (THRUSH). Candida guilliermondii var. nitratophila,Candida utilis,Cyberlindnera jadinii,Hansenula jadinii,Lindnera jadinii,Monilia,Pichia jadinii,Saccharomyces jadinii,Torula utilis,Torulopsis utilis,Monilias
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal

Related Publications

Y Fukumori, and K Nakayama, and T Yamanaka
January 1980, Proceedings of the National Academy of Sciences of the United States of America,
Y Fukumori, and K Nakayama, and T Yamanaka
October 1979, FEBS letters,
Y Fukumori, and K Nakayama, and T Yamanaka
September 2013, Experimental biology and medicine (Maywood, N.J.),
Y Fukumori, and K Nakayama, and T Yamanaka
October 1992, Biochemistry international,
Y Fukumori, and K Nakayama, and T Yamanaka
April 1987, European journal of biochemistry,
Y Fukumori, and K Nakayama, and T Yamanaka
June 1998, Science (New York, N.Y.),
Y Fukumori, and K Nakayama, and T Yamanaka
June 1980, The Biochemical journal,
Y Fukumori, and K Nakayama, and T Yamanaka
January 1986, Methods in enzymology,
Y Fukumori, and K Nakayama, and T Yamanaka
April 2001, Molecular and biochemical parasitology,
Copied contents to your clipboard!