Changes in excitability induced by herpes simplex viruses in rat dorsal root ganglion neurons. 1986

M L Mayer, and M H James, and R J Russell, and J S Kelly, and C A Pasternak

The physiological properties of rat sensory neurons infected with herpes simplex type 1 viruses and maintained in cell culture were studied using intracellular recording techniques. Two syncytial (cell fusing) and two nonsyncytial strains of virus were examined; individual strains of virus had different effects on neuronal excitability. The nonsyncytial viruses caused a loss of tetrodotoxin-sensitive low-threshold action potentials and blocked hyperpolarization-activated inward rectification, but did not alter the resting membrane potential, depolarization-activated outward rectification, or render the cells leaky. These effects develop progressively over the period 5-15 hr postinfection. One syncytial strain of virus induced spontaneous electrical activity that appeared to be the result of discrete electrical coupling between sensory neuron processes; as a result, action potential discharge is synchronized in coupled neurons. A second syncytial strain of virus rendered neurons inexcitable; however, in these experiments the input resistance fell to low values, possibly as a result of extensive coupling between sensory neurons. Viral replication in sensory neurons was demonstrable with indirect immunofluorescence using an antibody to herpes simplex viruses and correlated with the onset of virally induced changes in excitability. Virally triggered changes in excitability were blocked by the specific herpes virus antimetabolite acyclovir, suggesting that viral adsorption and penetration are by themselves insufficient to evoke changes in excitability. These results suggest that herpes viruses have selective effects on the excitable mechanisms in sensory neurons that are not simply the result of a general loss of membrane conductances or the disruption of transmembrane ion gradients.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D006561 Herpes Simplex A group of acute infections caused by herpes simplex virus type 1 or type 2 that is characterized by the development of one or more small fluid-filled vesicles with a raised erythematous base on the skin or mucous membrane. It occurs as a primary infection or recurs due to a reactivation of a latent infection. (Dorland, 27th ed.) Herpes Simplex Virus Infection
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

M L Mayer, and M H James, and R J Russell, and J S Kelly, and C A Pasternak
February 2001, Journal of neurophysiology,
M L Mayer, and M H James, and R J Russell, and J S Kelly, and C A Pasternak
April 1992, Brain research,
M L Mayer, and M H James, and R J Russell, and J S Kelly, and C A Pasternak
September 2002, The Journal of cell biology,
M L Mayer, and M H James, and R J Russell, and J S Kelly, and C A Pasternak
August 2008, Anesthesia and analgesia,
M L Mayer, and M H James, and R J Russell, and J S Kelly, and C A Pasternak
February 2000, Journal of virology,
M L Mayer, and M H James, and R J Russell, and J S Kelly, and C A Pasternak
June 1992, FEBS letters,
M L Mayer, and M H James, and R J Russell, and J S Kelly, and C A Pasternak
October 1999, Neuroscience letters,
M L Mayer, and M H James, and R J Russell, and J S Kelly, and C A Pasternak
October 2002, Journal of virology,
M L Mayer, and M H James, and R J Russell, and J S Kelly, and C A Pasternak
November 1997, Journal of neurocytology,
M L Mayer, and M H James, and R J Russell, and J S Kelly, and C A Pasternak
August 2014, Cold Spring Harbor protocols,
Copied contents to your clipboard!