Isolation and characterization of the yeast aspartyl-tRNA synthetase gene. 1985

M Sellami, and G Prévost, and J Bonnet, and G Dirheimer, and J Gangloff

A yeast genomic library in Escherichia coli, constructed by insertion of Sau3A restriction fragments into the hybrid Saccharomyces cerevisiae-E. coli plasmid pFL1, was screened by a radioimmunoassay (RIA) for colonies expressing yeast aspartyl-tRNA synthetase (AspRS). Four clones were isolated by this technique. Data obtained by Southern and restriction analysis of the inserts showed a common 3.8-kb BamHI restriction fragment which, when inserted into the plasmid pFL1, gave a positive RIA. Several controls showed that this 3.8-kb insert codes for the entire AspRS: (i) S. cerevisiae transformed by the PFL1 plasmid carrying the 3.8-kb fragment overproduces AspRS activity by a factor of ten compared to the wild-type yeast strain; and (ii) a new protein with electrophoretic behaviour similar to AspRS and immuno-reactive toward anti-AspRS appears in crude extracts of transformed yeast and E. coli.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D001226 Aspartate-tRNA Ligase An enzyme that activates aspartic acid with its specific transfer RNA. EC 6.1.1.12. Aspartyl T RNA Synthetase,Asp-tRNA Ligase,Aspartyl-tRNA Synthetase,Asp tRNA Ligase,Aspartate tRNA Ligase,Aspartyl tRNA Synthetase,Ligase, Asp-tRNA,Ligase, Aspartate-tRNA,Synthetase, Aspartyl-tRNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

M Sellami, and G Prévost, and J Bonnet, and G Dirheimer, and J Gangloff
October 1983, Journal of biomolecular structure & dynamics,
M Sellami, and G Prévost, and J Bonnet, and G Dirheimer, and J Gangloff
May 1971, European journal of biochemistry,
M Sellami, and G Prévost, and J Bonnet, and G Dirheimer, and J Gangloff
June 1987, European journal of biochemistry,
M Sellami, and G Prévost, and J Bonnet, and G Dirheimer, and J Gangloff
October 1987, Journal of biomolecular structure & dynamics,
M Sellami, and G Prévost, and J Bonnet, and G Dirheimer, and J Gangloff
August 2003, Journal of molecular biology,
M Sellami, and G Prévost, and J Bonnet, and G Dirheimer, and J Gangloff
July 1992, Proceedings of the National Academy of Sciences of the United States of America,
M Sellami, and G Prévost, and J Bonnet, and G Dirheimer, and J Gangloff
March 1980, Journal of molecular biology,
M Sellami, and G Prévost, and J Bonnet, and G Dirheimer, and J Gangloff
December 1989, Gene,
M Sellami, and G Prévost, and J Bonnet, and G Dirheimer, and J Gangloff
January 1993, Biochimie,
M Sellami, and G Prévost, and J Bonnet, and G Dirheimer, and J Gangloff
November 1983, Biochemical and biophysical research communications,
Copied contents to your clipboard!