Structural and Functional Characterization of Membrane Fusion Inhibitors with Extremely Potent Activity against Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus. 2018

Huihui Chong, and Yuanmei Zhu, and Danwei Yu, and Yuxian He
MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

T-20 (enfuvirtide) is the only membrane fusion inhibitor available for the treatment of viral infection; however, it has low anti-human immunodeficiency virus (anti-HIV) activity and a low genetic barrier for drug resistance. We recently reported that T-20 sequence-based lipopeptides possess extremely potent in vitro and in vivo efficacies (X. Ding, Z. Zhang, H. Chong, Y. Zhu, H. Wei, X. Wu, J. He, X. Wang, Y. He, 2017, J Virol 91:e00831-17, https://doi.org/10.1128/JVI.00831-17; H. Chong, J. Xue, Y. Zhu, Z. Cong, T. Chen, Y. Guo, Q. Wei, Y. Zhou, C. Qin, Y. He, 2018, J Virol 92:e00775-18, https://doi.org/10.1128/JVI.00775-18). Here, we focused on characterizing the structure-activity relationships of the T-20 derivatives. First, a novel lipopeptide termed LP-52 was generated with improved target-binding stability and anti-HIV activity. Second, a large panel of truncated lipopeptides was characterized, revealing a 21-amino-acid sequence core structure. Third, it was surprisingly found that the addition of the gp41 pocket-binding residues in the N terminus of the new inhibitors resulted in increased binding but decreased antiviral activities. Fourth, while LP-52 showed the most potent activity in inhibiting divergent HIV-1 subtypes, its truncated versions, such as LP-55 (25-mer) and LP-65 (24-mer), still maintained their potencies at very low picomolar concentrations; however, both the N- and C-terminal motifs of LP-52 played crucial roles in the inhibition of T-20-resistant HIV-1 mutants, HIV-2, and simian immunodeficiency virus (SIV) isolates. Fifth, we verified that LP-52 can bind to target cell membranes and human serum albumin and has low cytotoxicity and a high genetic barrier to inducing drug resistance.IMPORTANCE Development of novel membrane fusion inhibitors against HIV and other enveloped viruses is highly important in terms of the peptide drug T-20, which remains the only one for clinical use, even if it is limited by large dosages and resistance. Here, we report a novel T-20 sequence-based lipopeptide showing extremely potent and broad activities against HIV-1, HIV-2, SIV, and T-20-resistant mutants, as well as an extremely high therapeutic selectivity index and genetic resistance barrier. The structure-activity relationship (SAR) of the T-20 derivatives has been comprehensively characterized, revealing a critical sequence core structure and the target sites of viral vulnerability that do not include the gp41 pocket. The results also suggest that membrane-anchored inhibitors possess unique modes of action relative to unconjugated peptides. Combined, our series studies have not only provided drug candidates for clinical development but also offered important tools to elucidate the mechanisms of viral fusion and inhibition.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015302 Simian Immunodeficiency Virus Species of the genus LENTIVIRUS, subgenus primate immunodeficiency viruses (IMMUNODEFICIENCY VIRUSES, PRIMATE), that induces acquired immunodeficiency syndrome in monkeys and apes (SAIDS). The genetic organization of SIV is virtually identical to HIV. SIV (Simian immunodeficiency virus),Immunodeficiency Viruses, Simian,Simian Immunodeficiency Viruses,Immunodeficiency Virus, Simian
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D015498 HIV-2 An HIV species related to HIV-1 but carrying different antigenic components and with differing nucleic acid composition. It shares serologic reactivity and sequence homology with the simian Lentivirus SIMIAN IMMUNODEFICIENCY VIRUS and infects only T4-lymphocytes expressing the CD4 phenotypic marker. HTLV-IV,Human T-Lymphotropic Virus Type IV,Human immunodeficiency virus 2,LAV-2,HIV-II,Human Immunodeficiency Virus Type 2,Human T Lymphotropic Virus Type IV,Immunodeficiency Virus Type 2, Human,SBL-6669
D053586 Virus Internalization The entering of cells by viruses following VIRUS ATTACHMENT. This is achieved by ENDOCYTOSIS, by translocation of the whole virus across the cell membrane, by direct MEMBRANE FUSION of the viral membrane with the CELL MEMBRANE, or by fusion of the membrane of infected cells with the membrane of non-infected cells causing SYNCYTIA to be formed. Viral Entry,Viral Internalization,Viral Membrane Fusion,Virus Entry,Virus Membrane Fusion,Entry, Viral,Entry, Virus,Fusion, Viral Membrane,Internalization, Viral,Internalization, Virus,Membrane Fusion, Viral

Related Publications

Huihui Chong, and Yuanmei Zhu, and Danwei Yu, and Yuxian He
April 2013, AIDS (London, England),
Huihui Chong, and Yuanmei Zhu, and Danwei Yu, and Yuxian He
October 2010, Molecular aspects of medicine,
Huihui Chong, and Yuanmei Zhu, and Danwei Yu, and Yuxian He
September 1988, Proceedings of the National Academy of Sciences of the United States of America,
Huihui Chong, and Yuanmei Zhu, and Danwei Yu, and Yuxian He
January 2012, Journal of virology,
Huihui Chong, and Yuanmei Zhu, and Danwei Yu, and Yuxian He
March 1996, AIDS research and human retroviruses,
Huihui Chong, and Yuanmei Zhu, and Danwei Yu, and Yuxian He
January 1989, Annals of the New York Academy of Sciences,
Huihui Chong, and Yuanmei Zhu, and Danwei Yu, and Yuxian He
June 2010, Nihon rinsho. Japanese journal of clinical medicine,
Huihui Chong, and Yuanmei Zhu, and Danwei Yu, and Yuxian He
May 2001, Journal of virology,
Huihui Chong, and Yuanmei Zhu, and Danwei Yu, and Yuxian He
February 2001, Phytotherapy research : PTR,
Copied contents to your clipboard!