Purification, Characterization, and Biochemical Assays of Biotin Synthase From Escherichia coli. 2018

Julia D Cramer, and Joseph T Jarrett
Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI, United States.

Biotin synthase (BioB) catalyzes the oxidative insertion of a sulfur atom between the C6 methylene and the C9 methyl positions in dethiobiotin. The enzyme couples oxidation of each carbon position to reduction of the S-adenosyl-l-methionine (SAM) sulfonium center, generating 5'-deoxyadenosine and l-methionine, products that are characteristic of enzymes from the radical SAM superfamily. In bacteria, biotin biosynthesis is tightly regulated by the dual-function BirA repressor/holocarboxylase synthetase, resulting in very low levels of all biotin biosynthetic enzymes such that activity-based purification of BioB from the native organism is virtually impossible. However, overexpression and purification of recombinant BioB from E. coli are straight forward and, in contrast with many radical SAM enzymes, can be carried out under aerobic conditions. The active enzyme contains two iron-sulfur clusters, and the characterization and manipulation of these clusters are essential for a thorough understanding of enzyme catalysis and stability. An optimized in vitro assay for BioB is described herein that requires use of an auxiliary protein reducing system and must be carried out under anaerobic conditions to prevent oxidative damage to the reduced iron-sulfur clusters. Three methods for detection of biotin are described, with discussion of the advantages and limitations of each method. Challenges that may be encountered in adapting these assays to other organisms are also discussed.

UI MeSH Term Description Entries
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001710 Biotin A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Vitamin H,Biodermatin,Biokur,Biotin Gelfert,Biotin Hermes,Biotin-Ratiopharm,Biotine Roche,Deacura,Gabunat,Medebiotin,Medobiotin,Rombellin,Biotin Ratiopharm,Gelfert, Biotin,Hermes, Biotin,Roche, Biotine
D012436 S-Adenosylmethionine Physiologic methyl radical donor involved in enzymatic transmethylation reactions and present in all living organisms. It possesses anti-inflammatory activity and has been used in treatment of chronic liver disease. (From Merck, 11th ed) AdoMet,Ademetionine,FO-1561,Gumbaral,S Amet,S-Adenosyl-L-Methionine,S-Adenosylmethionine Sulfate Tosylate,SAM-e,Samyr,FO 1561,FO1561,S Adenosyl L Methionine,S Adenosylmethionine,S Adenosylmethionine Sulfate Tosylate
D013466 Sulfurtransferases Enzymes which transfer sulfur atoms to various acceptor molecules. EC 2.8.1. Sulfurtransferase
D057075 Enzyme Assays Methods used to measure the relative activity of a specific enzyme or its concentration in solution. Typically an enzyme substrate is added to a buffer solution containing enzyme and the rate of conversion of substrate to product is measured under controlled conditions. Many classical enzymatic assay methods involve the use of synthetic colorimetric substrates and measuring the reaction rates using a spectrophotometer. Enzymatic Assays,Indirect Enzymatic Assays,Indirect Enzyme Assays,Assay, Enzymatic,Assay, Enzyme,Assay, Indirect Enzymatic,Assay, Indirect Enzyme,Assays, Enzymatic,Assays, Enzyme,Assays, Indirect Enzymatic,Assays, Indirect Enzyme,Enzymatic Assay,Enzymatic Assay, Indirect,Enzymatic Assays, Indirect,Enzyme Assay,Enzyme Assay, Indirect,Enzyme Assays, Indirect,Indirect Enzymatic Assay,Indirect Enzyme Assay
D029968 Escherichia coli Proteins Proteins obtained from ESCHERICHIA COLI. E coli Proteins

Related Publications

Julia D Cramer, and Joseph T Jarrett
January 1988, Methods in enzymology,
Julia D Cramer, and Joseph T Jarrett
February 2004, Biochemistry,
Julia D Cramer, and Joseph T Jarrett
December 1997, Bioscience, biotechnology, and biochemistry,
Julia D Cramer, and Joseph T Jarrett
January 1992, Methods in enzymology,
Julia D Cramer, and Joseph T Jarrett
May 1980, Analytical biochemistry,
Julia D Cramer, and Joseph T Jarrett
December 2002, FEBS letters,
Julia D Cramer, and Joseph T Jarrett
May 1977, The Journal of biological chemistry,
Julia D Cramer, and Joseph T Jarrett
March 1984, The Journal of biological chemistry,
Julia D Cramer, and Joseph T Jarrett
April 2002, The Journal of biological chemistry,
Copied contents to your clipboard!