Rat hippocampal neurons in culture: Ca2+ and Ca2+-dependent K+ conductances. 1986

M Segal, and J L Barker

Rat hippocampal neurons grown in dissociated cell culture were studied in a medium containing 1 microM tetrodotoxin (TTX) and 25 mM tetraethylammonium (TEA), which eliminated the Na+ and K+ conductances normally activated by depolarizing current injections. In this medium depolarizing current pulses evoked depolarizing regenerative potentials and afterhyperpolarizations in most cells. Both of these events were blocked by close application of Co2+ or Cd2+. These events resemble Ca2+ spikes reported previously in hippocampal pyramidal cells. The membrane potential at which these Ca2+ spikes could be triggered and the rheobase current necessary were dependent on the potential at which the cell was conditioned: the more depolarized the holding potential, the more negative the absolute potential at which a spike could be triggered and the less rheobase current required. The duration of these Ca2+ spikes was also sensitive to the holding potential: the more depolarized the holding level, the longer the duration of the triggered spikes. The amplitude and duration of the Ca2+ spikes were enhanced in a reversible manner by 0.5-1.0 mM 4-aminopyridine (4-AP) delivered in the vicinity of the cell. Two-electrode voltage-clamp analysis of cells studied in TTX, TEA-containing medium revealed an inward current response that peaked in 25-50 ms during depolarizing commands. This response first became detectable during commands to -30 mV. It peaked in amplitude during commands to -10 mV and was enhanced in medium containing elevated [Ca2+]0. It was blocked by either 20 mM Mg2+, 0.2 mM Cd2+, 5 mM Co2+, or 5 mM Mn2+. These results have led us to identify this inward current response as ICa2+. 4-AP enhanced the magnitude and duration of ICa2+ independent of the drug's depressant effects on a transient K+ current also observed under these same experimental conditions. In many but not all cells the Ca2+ spike was followed by a long-lasting hyperpolarization associated with an increase in membrane conductance. This was blocked by Co2+. Under voltage clamp ICa2+ was followed by a slowly developing outward current response that was attenuated by Co2+ or Cd2+. These properties observed under current- and voltage-clamp recording conditions are superficially similar to those previously reported for Ca2+-dependent K+ conductance mechanisms (IC) recorded in these and other membranes. Long-lasting tail currents following activation of IC inverted in the membrane potential range for the K+ equilibrium potential found in these cells.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000631 Aminopyridines Pyridines substituted in any position with an amino group. May be hydrogenated but must retain at least one double bond. Aminopyridine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015761 4-Aminopyridine One of the POTASSIUM CHANNEL BLOCKERS with secondary effect on calcium currents which is used mainly as a research tool and to characterize channel subtypes. 4-Aminopyridine Sustained Release,Dalfampridine,Fampridine-SR,Pymadine,VMI-103,4 Aminopyridine,4 Aminopyridine Sustained Release,Fampridine SR,Sustained Release, 4-Aminopyridine,VMI 103,VMI103

Related Publications

M Segal, and J L Barker
January 1985, The Japanese journal of physiology,
M Segal, and J L Barker
April 1991, Cellular and molecular neurobiology,
M Segal, and J L Barker
February 1996, Neuroscience letters,
M Segal, and J L Barker
February 1986, Brain research,
M Segal, and J L Barker
August 2007, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!